- •Реферат для сдачи кандидатского экзамена по основам информационных технологий на тему «Информационные технологии автоматизированного проектирования»
- •Содержание введение
- •1. Общие положения
- •1.1 Основные принципы создания сапр
- •1.2 Состав и структура сапр
- •1.3 Виды обеспечения сапр и требования к ним
- •2. Aвтоматизированное проектирование (computer - aided design - cad)
- •2 Обзор сапр
- •2.1 Тяжёлые сапр
- •2.2 Средний класс сапр
- •2.3 Легкие системы
- •Заключение
- •Список используемых источников
1.3 Виды обеспечения сапр и требования к ним
Стандарты по САПР требуют выделения в качестве самостоятельного компонента организационного обеспечения, которое включает в себя положения, инструкции, приказы, штатные расписания, квалифицированные требования и другие документы, регламентирующие организационную структуру подразделений проектной организации и взаимодействие подразделений с комплексом средств автоматизированного проектирования. Функционирование САПР возможно только при наличии и взаимодействии перечисленных ниже средств:
- программного обеспечения;
- информационного обеспечения;
- методического обеспечения;
- математического обеспечения;
- лингвистического обеспечения;
- технического обеспечения;
- организационного обеспечения.
Программное обеспечение САПР .
Программное обеспечение САПР это совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делится на общесистемное и специализированное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т. е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специализированном ПО реализуется математическое обеспечение непосредственно для выполнения проектных этапов.
Требования к компонентам программного обеспечения:
Компоненты программного обеспечения, объединенные в программно-методический комплекс (ПМК) и программно-технические комплексы (ПТК), должны иметь иерархическую организацию, в которой на верхнем уровне размещается монитор управления компонентами нижних уровней программными модулями.
Программный модуль должен: регламентировать функционально законченное преобразование информации; быть написанным на одном из стандартных языков программирования; удовлетворять соглашениям о представлении данных, принятым в данной быть оформленным в соответствии с требованиями ЕСДП.[1]
Монитор служит для: управления функционированием набора программных модулей ПМК, включая контроль последовательности и правильности исполнения; реализации общения пользователя с ПМК и программных модулей с соответствующими базами данных (БД); сбора статистической информации.
2. Aвтоматизированное проектирование (computer - aided design - cad)
Существующие технологии: автоматизированного проектирования (computer - aided design - CAD), автоматизированного производства (computer - aided mаnufасturing - САМ) и автоматизированной разработки или конструирования (соmрutеr аidеd engineering - СAЕ). Значение систем САD/СAМ/СAЕ описывают различные задачи и операции, которые приходится решать и выполнять в процессе разработки и производства продукта. Все эти задачи, взятые вместе, называются жизненным циклом продукта (product cycle). Пример жизненного цикла продукта, который привёл Зейд, с незначительными усовершенствованиями приведен на рис. 1.[8]
Рисунок 1. Жизненный цикл продукта
Прямоугольники, нарисованные сплошными линиями, представляют два главных процесса, составляющих жизненный цикл продукта: процесс разработки и процесс производства. Процесс разработки начинается с запросов потребителей, которые обслуживаются отделом маркетинга, и заканчивается полным описанием продукта, обычно выполняемым в форме рисунка, чертежа. Процесс производства начинается с технических требований и заканчивается поставкой готовых изделий.
Представляет собой технологию, состоящую в использовании компьютерных систем для облегчения создания, изменения, анализа и оптимизации проектов. Таким образом, любая программа, работающая с компьютерной графикой, так же как и любое приложение, используемое в инженерных расчетах, относится к системам автоматизированного проектирования.
Самая основная функция CAD - определение геометрии конструкции (детали механизма, архитектурные элементы, электронные схемы, планы зданий и т.п.), поскольку геометрия определяет все последующие этапы жизненного цикла продукта. Для этой цели обычно используются Автоматическое конструирование (computer - aided engineering - САЕ) - это технология, состоящая в использовании компьютерных систем для анализа геометрии CAD, моделирования и изучения поведения продукта для усовершенствования и оптимизации конструкции объекта. Средства САЕ могут осуществлять множество различных вариантов анализа. Программы для кинематических pacчетов, например, способны определять траектории движения и скорости звеньев в механизмах. Программы динамического анализа с большими смещениями могут использоваться для определения нагрузок и смещений в сложных составных устройствах типа автомобилей. Прогpаммы верификации и анализа логики и синхронизации имитируют работу сложных электронных цепей системы разработки рабочих чертежей и геометрического моделирования.
Из всех методов компьютерного анализа наиболее широко в конструировании используется метод конечных элементов (finite element method - FЕМ). С eгo помощью рассчитываются напряжения, деформации, теплообмен, распределение магнитного поля, потоки жидкостей и другие задачи с непрерывными средами, решать которые каким-либо иным методом оказывается просто непрактично. В методе конечных элементов аналитическая модель структуры представляет собой соединение элементов, благодаря чему она разбивается на отдельные части, которые уже могут обрабатываться компьютером.
Создание САПР-продуктов происходит в следующих направлениях:
• универсальный графический пакет для плоского черчения, объемного моделирования и фотореалистической визуализации;
• открытая графическая среда для создания приложений (собственно САПР для решения разнообразных проектных и технических задач в различных областях);
• графический редактор и графическая среда приложений;
• открытая среда конструкторского проектирования;
• САПР для непрофессионалов (домашнего использования).
Наиболее полно возможности САПР-продукта на уровне универсального графического пакета можно проследить на примере AutoCAD - самого популярного на постсоветском пространстве чертежного пакета. AutoCAD. Программа разработана компанией Autodesk, представляет собой систему автоматизированного проектирования. Программа является самой распространенной, и ее используют архитекторы, инженеры в области машиностроения и приборостроения, конструкторы.
Использование AutoCAD позволяет сэкономить много времени при разработке проектов при максимально возможной точности (превышающие ручное проектирование и черчение). Сохранение готовых работ в различных форматах, позволяет открывать их в других редакторах, и наоборот, просматривать и исправлять проекты выполненные не в AutoCAD, встраивать готовые узлы в другие конструции и т.д.
Основные характеристики разработки фирмы AutoDesk:
• возможность работы с несколькими файлами чертежей в одном сеансе без потери производительности;
• контекстное всплывающее меню, включающее группу операций буферного обмена, повтора последней операции, отмены действий и возврата отмененного действия, вызова динамических интерактивных операций панорамирования и зуммирования и др.;
• наличие средств моделирования, позволяющих редактировать твердотельные объекты на уровне ребер и граней;
• возможность обращения к свойствам объектов;
• возможность выбора, группировки и фильтрации объектов по типам и свойствам;
• наличие технологии создания и редактирования блоков;
• возможность вставки в чертеж гиперссылок;
• включение Design Center - нового интерфейса технологии drag-and-drop для работы с блоками, внешними ссылками, файлами изображений и чертежей;
• управление толщиной (весом) линий напрямую с воспроизводством на экране;
• возможность работы со слоями без вывода на печать;
• наглядная работа с размерами и размерными стилями;
• наличие средств управления видами и системами координат;
• наличие нескольких режимов визуализации от проволочного каркаса до закраски;
• наличие средств обеспечения точности ввода при создании и редактировании;
• возможность компоновки чертежей и вывода на печать;
• работа с внешними базами данных;
• наличие средств настройки с помощью редакторов Visual LISP и Visual Basic;
• совместимость версий (в форматах DWG AutoCAD R14, R13 Иформатах DFX AutoCAD R14, R13, R12).[11]
По оценкам специалистов AutoCAD 2000 является почти идеальным универсальным 2D/ЗD (двух- и трехмерной геометрии) графическим пакетом средней ценовой категории.
Создание приложений связано со спецификой конкретной предметной области и решается эта задача на различных инструментальных платформах. Рассмотрим эту проблему применительно к САПР в радиоэлектронике. Радиоэлектроника является очень широкой научно-технической областью, поэтому остановимся только на проблеме проектирования радиоэлектронной аппаратуры (РЭА).
Основные требования, предъявляемые к САПР в области проектирования РЭА:
решение всего комплекса задач проектирования РЭА: ввод структурной, функциональной и принципиальной схем; проведение расчетов; моделирование; конструирование аппаратуры; технологическая подготовка производства и изготовление;
наличие полной библиотеки элементов и узлов, источников (генераторов) сигналов и шумов, с большим набором параметров и возможностью их легкой модификации;
наличие справочной базы данных и ГОСТов;
проведение необходимых расчетов (надежности, мощности, рабочих режимов и других параметров);
возможность импорта и экспорта информации из других информационных систем;
поддержка разнообразной периферии.
Процесс проектирования РЭА принято разбивать на этапы (системный, схемный, конструкторский, технологический, производственный), а саму проектируемую РЭА на уровни (система, подсистема или аппаратура, прибор, блок, ячейка или узел). Исходя из такого разбиения, представляется естественным требование, чтобы САПР поддерживали все этапы и уровни проектирования в полном объеме.
В последние годы большой интерес вызывают САПР для непрофессионалов (домашнего использования). Области их использования: индивидуальное строительство, любительское моделирование и конструирование, планирование и дизайн ландшафта, интерьера и др. Требования к системам этого класса - приемлемая стоимость и невысокие требования к ресурсам компьютера.
Наиболее перспективным в области автоматизированного проектирования является использование открытых сред, основной особенностью которых является автоматизация процесса проектирования: выбор структуры объекта проектирования; необходимые расчеты, включая геометрические и т.д. Примером реализации такого подхода является СПРУТ-технология, реализованная в виде графической оболочки со сменной проблемной ориентацией DiaCAD.
Но следует отметить, что DiaCAD является только составной частью СПРУТ-технологии и используется в случаях, когда процесс проектирования формализован в данной предметной среде. Где же это невозможно сделать, используются средства интерактивного черчения, так же как в известных средствах графического редактирования.
Возможности DiaCAD определяются перечнем решаемых задач:
оперативная разработка чертежей с соблюдением требований ГОСТов;
создание и использование иерархических графических баз данных;
интерактивная параметризация чертежа и его типовых фрагментов;
интеллектуальное редактирование (редактирование чертежа путем изменения значений размеров);
получение параметризированных программ без программирования.[7]
Функционально DiaCAD можно разделить на две части: среда администратора графической базы данных и среда конструктора.
Среда администратора графической базы данных предназначена для работы с иерархическими графическими базами данных и позволяет решать следующие задачи:
создание базы данных с произвольной иерархической структурой;
оперативный просмотр чертежа;
копирование данных из одного чертежа в другой;
вывод чертежа на графопостроитель или печатающее устройство.
Среда конструктора позволяет создавать и редактировать чертежи и геометрические модели.
Принципиальной отличительной особенностью DiaCAD является возможность создания на ее основе с использованием единой интегрированной среды СПРУТ собственной САПР.
Как и любая сложная система, САПР состоит из подсистем. Различают подсистемы проектирующие и обслуживающие. Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации. Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными (PDM -- Product Data Management), управления процессом проектирования (DesPM -- Design Process Management), пользовательского интерфейса для связи разработчиков с ЭВМ, CASE (Computer Aided Software Engineering) для разработки и сопровождения программного обеспечения САПР, обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.
Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:
- техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);
- математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;
- программное (ПО), представляемое компьютерными программами САПР;
- информационное (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также других данных, используемых при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, а БД вместе с СУБД носит название банка данных (БнД);
- лингвистическое (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;
- методическое (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;
- организационное, представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.
Классификацию САПР осуществляют по ряду признаков: по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы -- ядра САПР.
По приложениям наиболее представительными и широко используемыми являются следующие группы САПР:
- для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или MCAD (Mechanical CAD) системами.
- для радиоэлектроники. Их названия -- ECAD (Electronic CAD) или EDA (Electronic Design Automation) системы.
- в области архитектуры и строительства.
Так же, известно большое число более специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь в классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т.п.
По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты проектирования. Так, в составе MCAD появляются CAE/CAD/CAM системы:
1) САПР функционального проектирования, иначе САПР-Ф или CAE (Computer Aided Engineering) системы.
2) конструкторские САПР общего машиностроения -- САПР-К, часто называемые просто CAD системами;
3) технологические САПР общего машиностроения -- САПР-Т, иначе называемые автоматизированными системами технологической подготовки производства АСТПП или системами CAМ (Computer Aided Manufacturing).
По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например, комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.
По характеру базовой подсистемы различают следующие разновидности САПР:
1) САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т.е. определение пространственных форм и взаимного расположения объектов. Поэтому к этой группе систем относится большинство графических ядер САПР в области машиностроения;
2) САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например, при проектировании бизнес-планов, но имеют место также при проектировании объектов, подобных щитам управления в системах автоматики;
3) САПР на базе конкретного прикладного пакета. Фактически это автономно используемые программно-методические комплексы, например, имитационного моделирования производственных процессов, расчета прочности по методу конечных элементов, синтеза и анализа систем автоматического управления и т.п. Часто такие САПР относятся к системам CAE. Примерами могут служить программы логического проектирования на базе языка VHDL язык описания аппаратуры интегральных схем. Язык проектирования VHDL является базовым языком при разработке аппаратуры современных вычислительных систем., математические пакеты типа MathCAD;
4) комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются CAE/CAD/CAM-системы в машиностроении или САПР БИС. Так, САПР БИС включает в себя СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий. Для управления столь сложными системами применяют специализированные системные среды.
Функции, характеристики и примеры CAE/CAD/CAM-систем. Функции CAD-систем в машиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относятся черчение, оформление конструкторской документации; к функциям 3D - получение трехмерных моделей, метрические расчеты, реалистичная визуализация, взаимное преобразование 2D и 3D моделей.
Среди CAD-систем различают «легкие» и «тяжелые» системы. Первые из них ориентированы преимущественно на 2D графику, сравнительно дешевы и менее требовательны в отношении вычислительных ресурсов. Вторые ориентированы на геометрическое моделирование (3D), более универсальны, дороги, оформление чертежной документации в них обычно осуществляется с помощью предварительной разработки трехмерных геометрических моделей. Основные функции CAM-систем: разработка технологических процессов, синтез управляющих программ для технологического оборудования с числовым программным управлением (ЧПУ), моделирование процессов обработки, в том числе построение траекторий относительного движения инструмента и заготовки в процессе обработки, генерация постпроцессоров для конкретных типов оборудования с ЧПУ (NC -- Numerical Control), расчет норм времени обработки. Наиболее известны следующие CAE/CAD/CAM-системы, предназначенные для машиностроения. «Тяжелые» системы (в скобках указана фирма, разработавшая или распространяющая продукт): Unigraphics (EDS Unigraphics); Solid Edge (Intergraph); Pro/Engineer (PTC -- Parametric Technology Corp.), CATIA (Dassault Systemes), EUCLID (Matra Datavision), CADDS.5 (Computervision, ныне входит в PTC) и др.
«Легкие» системы: AutoCAD (Autodesk); АДЕМ; bCAD (ПроПро Группа, Новосибирск); Caddy (Ziegler Informatics); Компас (Аскон, С.Петербург); Спрут (Sprut Technology, Набережные Челны); Кредо (НИВЦ АСК, Москва). [5]
Системы, занимающие промежуточное положение (среднемасштабные): Cimatron, Microstation (Bentley), Euclid Prelude (Matra Datavision), T-FlexCAD (Топ Системы, Москва) и другие. C ростом возможностей персональных ЭВМ грани между «тяжелыми» и «легкими» CAD/CAM-системами постепенно стираются.
