- •1. Предмет и задачи биофизики
- •2. Развитие и становление биофизики как науки
- •8. Колебательные процессы в биологии. Значение их теоретического исследования. Предельные циклы и тд.
- •9. Кинетика ферментативных реакций. Особенности механизма ферментативных процессов.
- •10. Стационарная кинетика ферментативных реакций.. Уравнение михаэлиса-ментен. Влияние различных факторов.
- •11. Множественность стационарных состояний биологических систем. Модели триггерного типа.
- •12. Влияние температуры на скорость реакций в био системах. Теория абсолютных скоростей реакций и активириванного комплекса.
- •19. Связь энтропии и информации в биологических системах. Понятия количества и ценности информации. Условия запасания, хранения и переработки информации в макромолекулярных системах.
- •20. Общие понятия стабильности конфигурации молекул, энергия связи. Макромолекула как основа организации биоструктур. Своеобразие макромолекул как физического объекта.
- •3.1.3. Электронные конфигурации двухатомных молекул
- •Анализ заселенностей орбиталей по Малликену. Понятие о зарядах и порядках связей.
- •2.3. Объёмное взаимодействие. Переходы глобула - клубок в биополимерах.
- •2.4. Условия существования клубка и глобулы.
- •2.5. Различные типы взаимодействия в макромолекулах.
- •2.7. Ориентационное взаимодействие.
- •2.8. Индукционное взаимодействие.
- •2.9. Дисперсионное взаимодействие.
- •2.10. Водородная связь и электростатические взаимодействия.
- •2.11. Физическая природа водородной связи.
- •2.12. Электростатические взаимодействия.
- •22. Факторы стабилизации макромолекул, надмолекулярных структур и биомембран.
- •23. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах. Переходы спираль-клубок.
- •24. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибриллярных и глобулярных белков.
- •25. Топология кольцевых замкнутых
- •27. Сворачивание полипептида в белковую глобулу
- •28. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •32. Современные представления о механизмах действия ферментов.
- •56. Типы фотохимических реакций
- •59. Кинетика фотобиологических процессов и зависимость от интенсивности света. Фотосенсибилизация.
- •61. Кинетика и физические механизмы переноса электрона в электронтранспортных цепях фотосинтеза. Механизмы сопряжения овр с трансмембранным переносом протона. Механизмы фосфорилирования.
- •62. Особенности и механизмы фотоэнергетических реакций бактериродопсина и зрительного пигмента родопсина.
- •64. Использование различных видов излучений в медицине, технике и с/х.
- •65. Первичные и начальные биологические процессы поглощения энергии ионизирующих излучений.
- •66. Единицы активности радионуклеотидов. Единицы доз ионизирующих излучений.
- •69.Действие малых доз и хронического облучения. Отдаленные последствия малых доз радиации на организм.
- •70. Факторы, модифицирующие лучевое поражение: радиопротекторы и радиосенсибилизаторы, их химическая природа и биологическое действие.
10. Стационарная кинетика ферментативных реакций.. Уравнение михаэлиса-ментен. Влияние различных факторов.
Кинетика действия ферментов - это раздел ферментологии, изучающий зависимость скорости реакции, катализируемой ферментами, от химической природы и условий взаимодействия субстрата с ферментом, а также от факторов среды. Иначе говоря, кинетика ферментов позволяет понять природу молекулярных механизмов действия факторов, влияющих на скорость ферментативного катализа. Этот раздел образовался на стыке таких наук, как биохимия, физика и математика. Самая ранняя попытка математически описать ферментативные реакции была предпринята Дюкло в 1898 г.
На самом деле этот раздел по изучению ферментов очень важен в наше время, а именно для практической медицины. Он даёт фармакологам инструмент направленного изменения метаболизма клетки, огромное количество фармацевтических препаратов и различные яды - это ингибиторы ферментов.
Целью данной работы является рассмотрение вопроса о зависимости скорости реакции от различных факторов, каким образом можно контролировать скорость реакций и как её можно определить.
1. Кинетика Михаэлиса - Ментен
Предварительные эксперименты по изучению кинетики ферментативных реакций показали, что скорость реакции , вопреки теоретическим ожиданиям, не зависит от концентрации фермента (Е) и субстрата (S) таким образом, как в случае обычной реакции второго порядка.
Михаэлис и Ментен предположили, что скорость реакции определяется распадом комплекса ES, т.е. константой k2. Это возможно только при условии, что k2 - наименьшая из констант скорости. В этом случае равновесие между фермент-субстратным комплексом, свободным ферментом и субстратом устанавливается быстро по сравнению со скоростью реакции (быстро устанавливающееся равновесие).
Начальную скорость реакции можно выразить следующей формулой:
v = k2 [ES]
Поскольку константа диссоциации фермент-субстратного комплекса равна
KS = [E] [S] / [ES] = k -1/k1
то концентрацию свободного фермента можно выразить как
[E] =KS [ES] / [S]
Общая концентрация фермента в реакционной смеси определяется формулой
[Е]т = [Е] + [ЕS] = KS [ЕS] / [S] + [ЕS]
Реакция достигает максимальной скорости, когда концентрация субстрата достаточно высока, чтобы все молекулы фермента находились в виде комплекса ЕS (бесконечно большой избыток субстрата). Отношение начальной скорости к теоретически возможной максимальной скорости равно отношению [ЕS] к [Е]т:
v / Vmax= [ES] / [E]т= [ES] / (KS [ES] / [S] + [ES]) = 1 / (KS+[S] +1)
Это классическое уравнение Михаэлиса и Ментен, которое со времени его публикации в 1913 г. стало фундаментальным принципом всех кинетических исследований ферментов в течение десятилетий и с некоторыми ограничениями осталось таким до сих пор.
Позднее было показано, что оригинальное уравнение Михаэлиса - Ментен предполагало наличие нескольких ограничений. Оно справедливо, т.е. правильно описывает кинетику реакции, катализируемой данным ферментом, только при условии выполнения всех следующих ограничительных условий:
1) образуется кинетически устойчивый фермент-субстратный комплекс;
2) константа KS является константой диссоциации фермент-субстратного комплекса: это справедливо, только если ;
3) концентрация субстрата не меняется в ходе реакции, т.е. концентрация свободного субстрата равна его начальной концентрации;
4) продукт реакции быстро отщепляется от фермента, т.е. не образуется кинетически значимого количества ЕS комплекса;
5) вторая стадия реакции необратима; точнее говоря, мы принимаем во внимание только начальную скорость, когда обратной реакцией (из-за фактического отсутствия продукта) еще можно пренебречь;
6) с каждым активным центром фермента связывается только одна молекула субстрата;
7) для всех реагирующих веществ вместо активностей можно использовать их концентрации.
Температура. С повышением температуры скорость всех ферментативных реакций увеличивается. Оптимальная температура для действия большинства животных ферментов находится в интервале 40-50 0С, растительных __ 40-60 °С. При более высоких температурах активность снижается, и многие ферменты разрушаются уже при температуре 70-80 °С. Это явление называется тепловой инактивацией и происходит из-за тепловой денатурации белков. При низких температурах активность ферментов также снижается, но они не разрушаются.
Оптимальная температура не является постоянной величиной, она зависит от длительности температурного воздействия и влажности среды, в которой фермент действует. Ферменты очень чувствительны к нагреванию в присутствии значительного количества воды. И наоборот, при низкой влажности и в сухом состоянии ферменты выдерживают температуру близкую к 100 °С без значительной инактивации.
Влияние рН.Каждый фермент проявляет свое действие в определенных, довольно узких пределах значений рН. Различные ферменты отличаются друг от друга по оптимальным величинам рН. Для большинства гидролитических ферментов оптимум рН находится в интервале 3-6.
Присутствие активаторов и ингибиторов. Активность ферментов зависит от наличия в реакционной среде различных соединений.Вещества, которые повышают каталитическую активность ферментов, называются активаторами. В качестве активаторов могут выступать ионы металлов (натрия, калия, магния, кальция, цинка, меди, марганца, железа) и другие вещества (ионы йода, брома, хлора, SH-группы).
Существуют также соединения (ингибиторы), которые подавляют действие ферментов. Они могут быть общими и специфическими. Общие – это те, которые инактивируют действие всех ферментов. К ним относятся соли тяжелых металлов (свинца, серебра, ртути), трихлоруксусная кислота (ТХУ), танин. Специфические - действуют только на определенную группу ферментов. Для ферментов дыхания и брожения ингибиторами являются галогенсодержащие соединения (хлорацетфенол, йодацетамид и т.д.).
Различают конкурентное и неконкурентное ингибирование.
Если концентрация молекул ингибитора значительно больше концентрации субстрата, то контактная площадка фермента почти всегда занята ингибитором. В этом случае субстрату некуда разместиться, так как площадка очень мала, и ферментативная реакция не идет.
Если количество молекул субстрата и ингибитора оказывается соизмеримым, то субстрату иногда удается попасть на контактную площадку. В этом случае ферментативная реакция не прекращается, а только замедляется. Скорость ее будет зависеть от количества ингибитора.
