- •1. Предмет и задачи биофизики
- •2. Развитие и становление биофизики как науки
- •8. Колебательные процессы в биологии. Значение их теоретического исследования. Предельные циклы и тд.
- •9. Кинетика ферментативных реакций. Особенности механизма ферментативных процессов.
- •10. Стационарная кинетика ферментативных реакций.. Уравнение михаэлиса-ментен. Влияние различных факторов.
- •11. Множественность стационарных состояний биологических систем. Модели триггерного типа.
- •12. Влияние температуры на скорость реакций в био системах. Теория абсолютных скоростей реакций и активириванного комплекса.
- •19. Связь энтропии и информации в биологических системах. Понятия количества и ценности информации. Условия запасания, хранения и переработки информации в макромолекулярных системах.
- •20. Общие понятия стабильности конфигурации молекул, энергия связи. Макромолекула как основа организации биоструктур. Своеобразие макромолекул как физического объекта.
- •3.1.3. Электронные конфигурации двухатомных молекул
- •Анализ заселенностей орбиталей по Малликену. Понятие о зарядах и порядках связей.
- •2.3. Объёмное взаимодействие. Переходы глобула - клубок в биополимерах.
- •2.4. Условия существования клубка и глобулы.
- •2.5. Различные типы взаимодействия в макромолекулах.
- •2.7. Ориентационное взаимодействие.
- •2.8. Индукционное взаимодействие.
- •2.9. Дисперсионное взаимодействие.
- •2.10. Водородная связь и электростатические взаимодействия.
- •2.11. Физическая природа водородной связи.
- •2.12. Электростатические взаимодействия.
- •22. Факторы стабилизации макромолекул, надмолекулярных структур и биомембран.
- •23. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах. Переходы спираль-клубок.
- •24. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибриллярных и глобулярных белков.
- •25. Топология кольцевых замкнутых
- •27. Сворачивание полипептида в белковую глобулу
- •28. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •32. Современные представления о механизмах действия ферментов.
- •56. Типы фотохимических реакций
- •59. Кинетика фотобиологических процессов и зависимость от интенсивности света. Фотосенсибилизация.
- •61. Кинетика и физические механизмы переноса электрона в электронтранспортных цепях фотосинтеза. Механизмы сопряжения овр с трансмембранным переносом протона. Механизмы фосфорилирования.
- •62. Особенности и механизмы фотоэнергетических реакций бактериродопсина и зрительного пигмента родопсина.
- •64. Использование различных видов излучений в медицине, технике и с/х.
- •65. Первичные и начальные биологические процессы поглощения энергии ионизирующих излучений.
- •66. Единицы активности радионуклеотидов. Единицы доз ионизирующих излучений.
- •69.Действие малых доз и хронического облучения. Отдаленные последствия малых доз радиации на организм.
- •70. Факторы, модифицирующие лучевое поражение: радиопротекторы и радиосенсибилизаторы, их химическая природа и биологическое действие.
59. Кинетика фотобиологических процессов и зависимость от интенсивности света. Фотосенсибилизация.
Фотобиологические процессы - процессы, которые начинаются с поглощения квантов света биологически функциональными молекулами и заканчиваются соответствующей физиологической реакцией в организме или тканях.
К фотобиологическим относят процессы, начинающиеся с поглощения кванта света биологически важной молекулой и заканчивающиеся какой-либо физиологической реакцией (позитивной или негативной) на уровне организма. К таким процессам относятся:
Фотосинтез – синтез органических молекул за счет энергии солнечного света; Фототаксис – движение организмов, например бактерий, к свету или от света; Фототропизм – поворот листьев или стеблей растений к свету или от света; Зрение – превращение световой энергии в энергию нервного импульса в сетчатке глаза или в аналогичных фоторецепторах; Действие ультрафиолетовых лучей (бактерицидное или бактериостатическое действие на микроорганизмы, мутагенное действие, канцерогенное действие, образование витамина D из провитаминов, эритемное действие на кожу, образование загара, терапевтические эффекты).
Условно всякий фотобиологический процесс можно разбить на несколько стадий: 1) поглощение кванта света, 2) внутримолекулярные процессы размена энергией (фотофизические процессы); 3) межмолекулярные процессы переноса энергии возбужденного состояния; 4) первичный фотохимический акт; 5) темновые реакции, заканчивающиеся образованием стабильных продуктов; 6) биохимические реакции с участием фотопродуктов; 7) общефизиологический ответ на действие света.
Во всех фотобиологических процессах энергия света необходима для преодоления активационного барьеров химических превращений. Однако в фотосинтезе при этом происходит непосредственное запасание световой энергии в виде энергии химических связей, конечных продуктов (глюкоза), поскольку последние обладают большим запасом свободной энергии по сравнению с исходными веществами (СО2 и Н;;О). В остальных фотобиологических процессах свет также индуцирует фотохимические реакции, но в их продуктах не содержится избытка свободной энергии по сравнению с исходными веществами. Тем не менее и в этих случаях в последующих за фотохимической стадиях темновых процесах могут инициироваться сложные физиолого-биохимические превращения, в ходе которых мобилизуются большие количества свободной энергии, ранее запасенной в биоструктурах. Конечные результаты такого рода превращений (например, стимулирующее действие света на морфогенез, биосинтез пигментов, фотостимуляция дыхания) по общему энергетическому эффекту могут быть весьма велики, хотя непосредственного запасания энергии света при этом и не происходит.
Выяснение механизмов и путей регуляции начальных этапов трансформации энергии электронного возбуждения и сопровождающих ее молекулярных превращений, включая изменения в хромофорных группах, их белковых носителях и окружающей мембране, представляет собой одну из основных задач биофизики. Эта проблема связана с выяснением роли и механизмов участия электронно-возбужденных состояний в биологических процессах.
Фотосенсибилизация с участием O2. Фотодинамические процессы. Фотовозбуждённый сенсибилизатор вступает в RedOx реакцию с макромолекулами, в результате образуются реакционноспособные радикалы сенсибилизатора и молекулы биологического субстрата. Радикалы вступают в реакцию с кислородом.
А другом случае происходит перенос энергии от фотосенсибилизатора на кислород с образованием синглетного кислорода или супероксид-иона. АФК реагируют с биологическими молекулами и повреждают их.
Фотосенсибилизация без участия O2. Фотостатические процессы. Возбуждённый фотосенсибилизатор взаимодействует с субстратом, вызывая его изменение, но не образует с субстратом постоянного соединения.
Возбуждённый фотосенсибилизатор образует устойчивое соединение с субстратом, нарушая его свойства.
60. Фотосинтез. Спектр действия, поглощение и миграция энергии в фотосинтетической единице. Механизмы разделения зарядов в реакционном центре. Генерация потенциалов. Роль мембранных структур. Электронтранспортная цепь и две фотохимические реакции.
Фотосинтез - процесс преобразования энергии света в энергию химических связей органических веществ на свету фотоавтотрофами при участии фотосинтетических пигментов.
Световая фаза фотосинтеза происходит на свету и только на внутренних мембранах хлоропласта – в тилакоидах, в которые встроены молекулы хлорофилла. В реакциях световой фазы участвуют хлорофилл, вода, ферменты и молекулы-переносчики, встроенные в мембраны.
Молекулы хлорофилла поглощают свет, электроны их атомов приходят в возбужденное состояние и перескакивают на орбитали, удаленные от ядра. Вследствие этого связь электронов с ядром ослабевает. Затем электроны подхватываются молекулами-переносчиками и выносятся на наружную сторону мембраны тилакоида.
В это же время под воздействием света происходит фотолиз воды, содержащейся в жидком веществе хлоропластов. Молекулы воды разлагаются на протоны водорода (H+) и ионы гидроксида (OH-). Последние отдают свои электроны, которые, в свою очередь, восполняют утраченные молекулами хлорофилла электроны. Гидроксильные группы (OH), соединяясь между собой, образуют молекулы воды и молекулярный кислород (O2), который выступает как побочный продукт фотосинтеза.
Протоны водорода накапливаются на внутренней стороне мембраны тилакоида. Постепенно по обеим сторонам мембраны между разноименно заряженными электронами и протонами водорода возникает разность потенциалов. При достижении критического уровня разности потенциалов протоны водорода начинают продвигаться по каналу белка АТФ-синтетазы, встроенного в мембрану тилакоида. Прохождение протонов водорода через канал АТФ-синтетазы сопровождается освобождением энергии, которая запасается в виде синтезируемой АТФ. На наружной стороне мембраны тилакоида протон водорода присоединяет электрон, превращаясь в атомарный водород (H).
В результате световой фазы синтезируются молекулы АТФ, образуется атомарный водород, выделяется молекулярный кислород. Эффективность световой фазы фотосинтеза велика: в результате фотохимических и фотофизических реакций запасается около 96% энергии поглощенного света.
Для осуществления темновой фазы свет не является обязательным условием, она протекает без участия света. Процессы темновой фазы происходят в строме хлоропластов, куда от тилакоидов гран поступают молекулы-переносчики, АТФ, а из воздуха – углекислый газ.
В строме имеется особое вещество – рибулозобифосфат (РиБФ), присоединяющий к себе углекислый газ с образованием шестиуглеродного промежуточного вещества. Оно, в свою очередь, распадается на две молекулы фосфоглицериновой кислоты (ФГК), которая является продуктом фотосинтеза, использующим энергию образующихся в световой фазе АТФ и атомарный водород. Через цепь химических реакций ФГК превращается частично вновь в РиБФ, частично – в глюкозу.
Суммарное уравнение фотосинтеза выглядит следующим образом:
6CO2 + 6H2O → C6H12O6 + O2
Физические механизмы процессов поглощения, запасания и миграции энергии молекулами хлорофилла. Поглощение фотона (hν) обусловлено переходом системы в различные энергетические состояния. В молекуле в отличие от атома возможны электронные, колебательные и вращательные движения, и общая энергия молекулы равна сумме этих видов энергий. Основной показатель энергии поглощающей системы - уровень ее электронной энергии, определяется энергией внешних электронов на орбите. Согласно принципу Паули, на внешней орбите находятся два электрона с противоположно направленными спинами, в результате чего образуется устойчивая система спаренных электронов. Поглощение энергии света сопровождается переходом одного из электронов на более высокую орбиту с запасанием поглощенной энергии в виде энергии электронного возбуждения. Важнейшая характеристика поглощающих систем - избирательность поглощения, определяемая электронной конфигурацией молекулы. В сложной органической молекуле есть определенный набор свободных орбит, на которые возможен переход электрона при поглощении квантов света. Согласно «правилу частот» Бора, частота поглощаемого или испускаемого излучения v должна строго соответствовать разности энергий между уровнями: V= (E2 – E1)/h, где h - постоянная Планка.
Каждый электронный переход соответствует определенной полосе поглощения. Таким образом, электронная структура молекулы определяет характер электронно-колебательных спектров.
Запасание поглощенной энергии связано с возникновением электронно-возбужденных состояний пигментов.
Известно два основных типа возбужденных состояний - синглетные и триплетные. Они отличаются по энергии и состоянию спина электрона. В синглетном возбужденном состоянии спины электронов на основном и возбужденном уровнях остаются антипараллельными, при переходе в триплетное состояние происходит поворот спина возбужденного электрона с образованием бирадикальной системы. При поглощении фотона молекула хлорофилла переходит из основного (S0) в одно из возбужденных синглетных состояний – S1 или S2, что сопровождается переходом электрона на возбужденный уровень с более высокой энергией. Возбужденное состояние S2 очень нестабильно. Электрон быстро (в течение 10-12 с) теряет часть энергии в виде тепла и опускается на нижний колебательный уровень S1, где может находиться в течение 10-9 с. В состоянии S1 может произойти обращение спина электрона и переход в триплетное состояние Т1, энергия которого ниже S1. Возможно несколько путей дезактивации возбужденных состояний:
· излучение фотона с переходом системы в основное состояние (флуоресценция или фосфоресценция); · перенос энергии на другую молекулу; · использование энергии возбуждения в фотохимической реакции.
Миграция энергии между молекулами пигментов может осуществляться по следующим механизмам. Индуктивно-резонансный механизм (механизм Фёрстера) возможен при условии, когда переход электрона оптически разрешен и обмен энергией осуществляется по экситонному механизму. Понятие «экситон» означает электронно-возбужденное состояние молекулы, где возбужденный электрон остается связанным с молекулой пигмента и разделения зарядов не происходит. Перенос энергии от возбужденной молекулы пигмента к другой молекуле осуществляется путем безызлучательного переноса энергии возбуждения. Электрон в возбужденном состоянии представляет собой осциллирующий диполь. Образующееся при этом переменное электрическое поле может вызвать аналогичные колебания электрона в другой молекуле пигмента при выполнении условий резонанса (равенство энергии между основным и возбужденным уровнями) и условий индукции, определяющих достаточно сильное взаимодействие между молекулами (расстояние не более 10 нм).
Обменно-резонансный механизм миграции энергии Теренина-Декстера имеет место в том случае, когда переход оптически запрещен и диполь при возбуждении пигмента не образуется. Для его осуществления необходим тесный контакт молекул (около 1 нм) с перекрыванием внешних орбиталей. В этих условиях возможен обмен электронами, находящимися как на синглетных, так и на триплетных уровнях.
ЭЛЕКТРОНТРАНСПОРТНАЯ ЦЕПЬ фотосинтеза, система переносчиков электронов в мембранах хлоропластов, осуществляющая транспорт электронов по градиенту потенциала от воды к конечным акцепторам с образованием аденозинтрифосфата (АТФ) и восстановленного никотинамидаденинди-нуклеотидфосфата (НАДФН -Н+).
Разделение
зарядов в реакционном центре включает
три стадии.
^ Первая
стадия — первичное
разделение зарядов. Высоко
разрешающая техника в фемтосекундном
интервале (10-15 с)
позволила выделить два процесса на
начальной стадии преобразования энергии
— перенос энергии и перенос электронов
в реакционном центре:
В
первые мгновенья (в пределах 100 фс)
устанавливается равновесие энергии
возбуждения между П680 и
молекулой хлорофилла а «внутренней»
фокусирующей антенны, т.е. перенос
энергии происходит быстрее, чем перенос
электрона. До переноса электрона от
П
на
Фео происходит ряд событий. Так же, как
и у пурпурных бактерий, реакционный
центр ФСП асимметричен и две молекулы
хлорофилла в димере не эквивалентны.
В одной молекуле хлорофилла а (П1)
кето-группа
при С9 и
кетоэфирная группа при С10 образуют
водородные связи с аминокислотами
белка D1, а вторая молекула хлорофилла а (П2)
на белке D2 образует только одну водородную
связь за счет кетоэфирной группы
(см. рис. 3.26). Поскольку П1 образует
большее число водородных связей, ее
редокс-потенциал выше и электрон-движущая
сила больше. В связи с этим при возбуждении
димера (П*) электрон переходит с одной
молекулы хлорофилла в димере к П1 и
образуется диполь. Электрон локализуется
на одной молекуле хлорофилла а в
димере. Возникает переходное состояние,
которое представляет собой состояние
с переносом заряда. Образование диполя
и локального электрического поля
вблизи П1 вызывает
переориентацию окружающих молекул
Н2О.
Это приводит к изменению конформации
специальной пары и снижению энергии
П
,
что облегчает перенос электрона к Фео.
Таким образом, внутримолекулярное
движение электрона в димере облегчает
перенос электрона к Фео и, следовательно,
сдвиг электрона в димере к П1 можно
рассматривать как начальную стадию
разделения зарядов.
^ Вторая
стадия — фотоокисление
пигмента П
. Разделение
зарядов между возбужденным П
и
первичным акцептором электрона Фео
осуществляется в течение нескольких
пикосекунд. В результате образуется
первичная радикальная пара (П
-Фео
).
В течение следующих 200 пс происходит
перенос электрона от Фео
на
QA с
образованием вторичной радикальной
пары
(П
-Фео-Q
)
— восстановленного Q
и
окисленного П
.
Третья
стадия — восстановление
пигмента. Окисленный
пигмент П
имеет
высокий окислительно-восстановительный
потенциал ( 1,12 В) и является очень
активным окислителем, который может
вызвать окислительную деструкцию
окружающих структур. Донором электрона
для П
в
нормальных физиологических условиях
является тирозин Z, для которого
источником электрона служит сложная
система фотоокисления воды. В ряде
случаев при нарушении процессов
фотоокисления воды в восстановлении
П
могут
участвовать тирозин D, цитохром b559,
ХлZ,
β-каротин.
Механизм генерации потенциала действия
На кривой потенциала выделяют следующие фазы:
1. Локальный ответ (местная деполяризация), предшествующий развитию потенциала действия. 2. Фаза деполяризации. Во время этой фазы мембранный потенциал быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше нуля, поэтому мембрана приобретает противоположный заряд – внутри она становится положительной, а снаружи – отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2 мс. 3. Фаза реполяризации. Она начинается при достижении определенного уровня мембранного потенциала (примерно +20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя. Длительность фазы 3-5 мс. 4. Фаза следовой деполяризации или следового отрицательного потенциала. Период, когда возвращение мембранного потенциала к потенциалу покоя временно задерживается. Он длится 15-30 мс. 5. Фаза следовой гиперполяризации или следового положительного потенциала. В эту фазу мембранный потенциал на некоторое время становится выше исходного уровня потенциала покоя. Ее длительность 250-300 мс.
Возникновение потенциала действия обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда мембранный потенциал достигает критического уровня, закрытые активационные ворота натриевых каналов открываются, и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы, т.е. натриевая проницаемость мембраны резко возрастает. Причем от чувствительности активационных ворот зависит величина критического уровня деполяризации (чем она выше, тем ниже критический уровень деполяризации, и наоборот).
Структура электрон-транспортной цепи фотосинтеза и характеристика ее компонентов. Электрон-транспортная цепь фотосинтеза включает довольно большое число компонентов, расположенных в мембранных структурах хлоропластов. Практически все компоненты, кроме хинонов, являются белками, содержащими функциональные группы, способные к обратимым окислительно-восстановительным изменениям, и выполняющие функции переносчиков электронов или электронов совместно с протонами. Ряд переносчиков ЭТЦ включают металлы (железо, медь, марганец). В качестве важнейших компонентов переноса электронов в фотосинтезе можно отметить следующие группы соединений: цитохромы, хиноны, пиридиннуклеотиды, флавопротеины, а также железопротеины, медьпротеины и марганецпротеины. Местоположение названных групп в ЭТЦ определяется в первую очередь величиной их окислительно-восстановительного потенциала.
редставления о фотосинтезе, в ходе которого выделяется кислород, формировалось под влиянием Z-схемы электронного транспорта Р. Хилла и Ф. Бенделла. Эта схема была представлена на основе измерения окислительно-восстановительных потенциалов цитохромов в хлоропластах. Электрон-транспортная цепь является местом превращения физической энергии электрона в химическую энергию связей и включает ФС I и ФС II. Z-схема исходит из последовательного функционирования и объединения ФСII с ФСI.
700 является первичным донором электронов, является хлорофиллом (по некоторым данным – димером хлорофилла а), передает электрон на промежуточный акцептор и может быть окислен фотохимическим путем. А0 – промежуточный акцептор электронов – является димером хлорофилла а.
Вторичными акцепторами электронов являются связанные железосерные центры А и В. Элементом структуры железосерных белков является решетка из взаимосвязанных атомов железа и серы, которую называют железосерным кластером.
Ферредоксин, растворимый в стромальной фазе хлоропласта железо-белок, находящийся снаружи мембраны, осуществляет перенос электронов от реакционного центра ФСI к НАДФ в результате образуется НАДФ-Н, необходимый для фиксации СО2. Все растворимые ферредоксины фотосинтезирующих организмов, выделяющих кислород (включая цианобактерии), относятся к типу 2Fe-2S.
Компонентом, переносящим электроны, является также цитохром f, связанный с мембраной. Акцептором электронов для связанного с мембраной цитохрома f и непосредственным донором для хлорофилл-белкового комплекса реакционного центра является медьсодержащий белок, который назван «распределительным переносчиком», - пластоцианин.
Хлоропласты также содержат цитохромы b6, и b559. Цитохром b6, являющийся полипептидом с молекулярной массой 18 кДа, участвует в циклическом переносе электрона.
Комплекс b6/f - это интегральный мембранный комплекс полипептидов, содержащий цитохромы типа b и f. Комплекс цитохромов b6/f катализирует транспорт электронов между двумя фотосистемами.
Комплекс цитохромов b6/f восстанавливает небольшой пул водорастворимого металлопротеина - пластоцианин (Пц), который служит для передачи восстановительных эквивалентов на комплекс ФС I. Пластоцианин - небольшой по размеру гидрофобный металлопротеин, включающий атомы меди.
Участниками первичных реакций в реакционном центре ФС II является первичный донор электронов Р680, промежуточный акцептор феофитин и два пластохинона (обычно обозначаемые Q и В), расположенные близко к Fe2+. Первичным донором электронов является одна из форм хлорофилла а, получившая название Р680, поскольку значительное изменение поглощения света наблюдалось при 680 им.
Первичным акцептором электронов в ФС II является пластохинон. Предполагают, что Q является железо-хиноновым комплексом. Вторичным акцептором электронов в ФС II является также пластохинон, обозначаемый В, и функционирующий последовательно с Q. Система пластохинон/пластохинон переносит одновременно с двумя электронами еще два протона и в связи с этим является двухэлектронной редокс-системой. По мере того, как два электрона передаются по ЭТЦ через систему пластохинон/пластохинон, два протона переносятся через мембрану тилакоида. Считают, что градиент концентрации протонов, возникающий при этом, и является движущей силой процесса синтеза АТФ. Следствием этого является повышение концентрации протонов внутри тилакоидов и возникновение значительного градиента рН между внешней и внутренней стороной тилакоидной мембраны: из внутренней стороны среда является более кислой, чем из внешней.
Типы фотохимических реакций:
Фотодиссоциация (фотолиз) приводит к разложению исходного вещества, поглотившего световую энергию. Примерами реакции фоторазложения служат такие: разложение галогенидов серебра (основа серебряной фотографии), фотолиз паров ацетонаCH3CO CH3 → CO + другие продукты.
Фотосинтез приводит к образованию более сложных соединений. Примерами реакций фотосинтеза служат:
фотосинтез озона в верхних слоях атмосферы, создающий защитный озоновый слой:
фотосинтез органических соединений из углекислого газа, воды, минеральных веществ зелеными растениями. В частности, синтез глюкозы может быть описан уравнением:
Фотохромизм – явление обратимого изменения пространственного или электронного строения молекул под действием света, сопровождающееся изменением окраски вещества. На основе фотохромных материалов изготовляются линзы с переменным светопропусканием, оконные стекла, фотохромные системы на основе некоторых органических и координационных соединений.
