- •1. Предмет и задачи биофизики
- •2. Развитие и становление биофизики как науки
- •8. Колебательные процессы в биологии. Значение их теоретического исследования. Предельные циклы и тд.
- •9. Кинетика ферментативных реакций. Особенности механизма ферментативных процессов.
- •10. Стационарная кинетика ферментативных реакций.. Уравнение михаэлиса-ментен. Влияние различных факторов.
- •11. Множественность стационарных состояний биологических систем. Модели триггерного типа.
- •12. Влияние температуры на скорость реакций в био системах. Теория абсолютных скоростей реакций и активириванного комплекса.
- •19. Связь энтропии и информации в биологических системах. Понятия количества и ценности информации. Условия запасания, хранения и переработки информации в макромолекулярных системах.
- •20. Общие понятия стабильности конфигурации молекул, энергия связи. Макромолекула как основа организации биоструктур. Своеобразие макромолекул как физического объекта.
- •3.1.3. Электронные конфигурации двухатомных молекул
- •Анализ заселенностей орбиталей по Малликену. Понятие о зарядах и порядках связей.
- •2.3. Объёмное взаимодействие. Переходы глобула - клубок в биополимерах.
- •2.4. Условия существования клубка и глобулы.
- •2.5. Различные типы взаимодействия в макромолекулах.
- •2.7. Ориентационное взаимодействие.
- •2.8. Индукционное взаимодействие.
- •2.9. Дисперсионное взаимодействие.
- •2.10. Водородная связь и электростатические взаимодействия.
- •2.11. Физическая природа водородной связи.
- •2.12. Электростатические взаимодействия.
- •22. Факторы стабилизации макромолекул, надмолекулярных структур и биомембран.
- •23. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах. Переходы спираль-клубок.
- •24. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибриллярных и глобулярных белков.
- •25. Топология кольцевых замкнутых
- •27. Сворачивание полипептида в белковую глобулу
- •28. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •32. Современные представления о механизмах действия ферментов.
- •56. Типы фотохимических реакций
- •59. Кинетика фотобиологических процессов и зависимость от интенсивности света. Фотосенсибилизация.
- •61. Кинетика и физические механизмы переноса электрона в электронтранспортных цепях фотосинтеза. Механизмы сопряжения овр с трансмембранным переносом протона. Механизмы фосфорилирования.
- •62. Особенности и механизмы фотоэнергетических реакций бактериродопсина и зрительного пигмента родопсина.
- •64. Использование различных видов излучений в медицине, технике и с/х.
- •65. Первичные и начальные биологические процессы поглощения энергии ионизирующих излучений.
- •66. Единицы активности радионуклеотидов. Единицы доз ионизирующих излучений.
- •69.Действие малых доз и хронического облучения. Отдаленные последствия малых доз радиации на организм.
- •70. Факторы, модифицирующие лучевое поражение: радиопротекторы и радиосенсибилизаторы, их химическая природа и биологическое действие.
2.11. Физическая природа водородной связи.
Экспериментальные и квантомеханические исследования показывают, что потенциальная энергия водородной связи имеет вид асимметричной кривой с двумя минимумами, локализованными вблизи отрицательных атомов, между которыми протон совершает туннельные переходы.
Потенциальная энергия водородной связи, соответствующая локализации протона около 2-х различных атомов азота.
Проявление водородной связи в спектрах, приводя к расширению инфракрасных полос поглощения А - Н групп, частоты колеблющихся групп, содержащих водородную связь, снижаются по отношению к их свободному состоянию.
2.12. Электростатические взаимодействия.
Этот вид взаимодействий дает не только существенный вклад в энергию водородной связи, но и играет большую роль в стабилизации биоструктур. Различные атомы в пептидных цепях существенно различаются по характеру взаимодействия в их частях. Взаимодействие частично заряженных атомов характеризуется электростатическим потенциалом, который в квазиклассическим приближении описывается законом Кулона:
,
где
-
проницаемость, для белков~3,5.
Распределение зарядов частично заряженных атомов в трифосфате имеет вид:
Подобное точечное представление, полученное на основе квантовых расчетов, оправдано в тех случаях, когда размеры составляют 60-70% от суммы радиусов Ван-дер-Ваальса, т.е. характерных расстояний, которые определяются дисперсионными, ориентационными и индукционными взаимодействиями.
Поворотная изомерия и энергия внутреннего вращения.
Классическая органическая химия предполагала, что вращение атомных групп вокруг единичных связей происходит совершенно свободно. Тем самым любые конформации, например этана, возникающие в результате внутренних поворотов, имеют одинаковую свободную энергию (изменение угла поворота не требует затраты энергии) На рис.1 изображено вращение вокруг связи С-С в молекуле этана (CH3-CH3):
|
Рис.1 Расположение С-С связей этана в транс-(a), цис-(б) и гош-(свёрнутой) (в) конформациях. (Проекция на плоскость, перпендикулярную с-с связям). |
Однако исследования термодинамических свойств этана и других соединений с единичными связями, а также структурные исследования, проведенные методами спектроскопии, показали, что внутреннее вращение всегда несвободно. Молекула этана имеет минимум энергии в скрещенной, или транс-конформации, и максимум – в цис-конформации.
Для
поворота на
,т.е.
для перехода из одной транс- конформации
в другую, ей тождественную, нужно
преодолеть барьер (энергетический)
равный 2,9 ккал/моль.
|
Рис.2 График зависимости потенциальной энергии внутреннего вращения в этапе от угла поворота. (U0=2, 9 ккал/моль) |
Для
этана и для других молекул с осевой
симметрией С3 зависимость
потенциальной энергии внутреннего
вращения U от угла поворота
можно
приближенно представить формулой:
,
где
-
высота потенциального барьера.
Значение
возрастает
при замене атомов Н на более объемистые
атомы и группы, например, для
CH3-C(CH3)3 – U0=4,4 ккал/моль.
уменьшается
при удлинении оси вращения.
ккал/моль.
1 ккал/моль.
Потенциальная энергия внутреннего вращения определяется взаимодействием валентно не связанных атомов и групп. Строгий квантово-механический расчет U затруднен, т.к. она определяется как малая разность полных энергий молекулы в цис- и транс- конформациях. Тормозящий потенциал (или барьер) возникает вследствие стерического, ван-дер-ваальсового отталкивания валентно не связанных атомов и квантово- механического взаимодействия связей, примыкающих к оси вращения (эффект ориентации связей). И то, и другое делает более устойчивой транс- конформацию (принцип скрещенных связей).
Отталкивание можно оценить, зная характерные кривые зависимости энергии межмолекулярного взаимодействия от межмолекулярного расстояния для модельных веществ.
|
Рис.3 Зависимость энергии межмолекулярного взаимодействия от расстояния. |
-
потенциал Букингема.
-
потенциал Леннарда-Джонса.
Эффект
ориентации связей определить трудно.
Грубую оценку можно получить, считая,
что в этане из-за малого ван-дер-ваальсового
радиуса атома Н
целиком
определяется эффектом ориентации, и
что у производных этана и у него самого
этот эффект одинаков. Тогда для
производных этана получают
,
где
-
"стерическая" потенциальная
энергия взаимодействия валентно не
связанных атомов i и k, находящихся на
расстоянии
друг
от друга.
зависит
от
.
Если молекула содержит сильно полярные
связи, то к правой части последнего
выражения надо добавить члены, учитывающие
электростатическое взаимодействие
атомов связей, примыкающих к оси
вращения. Это существенно для биополимеров.
Потенциал взаимодействия
атомов
Н и С связей С-Н и С-С описывается
эмпирическими потенциалами Хилла,
Бартелла, Китайгородского и др. на
основе данных о кристаллохимических
и термодинамических свойствах простых
углеводородов. Эти потенциалы имеют
свой вид
,
где а, K, K`- const.
Китайгородский
ввел универсальную функцию
так
называемый атом-атомный потенциал. В
случае пары атомов он выражает
взаимодействие "универсальных
нейтральных атомов" и характеристических
зарядов на ядрах. Функция Китайгородского
имеет вид:
,
где
,
r0 –
сумма Ван-дер-Ваальсовых радиусов
взаимодействия атомов,
-
значение U при r=2/3r0.
Для
связей типа С-С, С-H, H-H Китайгородский
принял значение
=3.5ккал/моль,
α=13.
При этих значениях
.
Приведенное выражение дает хорошие
результаты при вычислении конформаций
как малых, так и макромолекул.
Если
молекула лишена аксиальной симметрии,
то кривая U(φ) становится
несимметричной и приведенное выражение
для U уже
непригодно. Так для бутана (
) U(φ) имеет
вид:
|
Рис.4 Зависимость энергии от угла вращения для бутана |
Очевидно, что молекулы, характеризуемые несколькими неэквивалентными минимумами энергии U(φ),будут существовать именно в этих состояниях, переходя из одной конформации в другую со скоростями, определяемыми высотами барьеров, разделяющих минимумы.
Относительное равновесное содержание молекул Н-бутана в гош- и транс- конформациях выражается величинами:
где Nt-число молекул в транс конформации, Nd и Nl-число молекул в конформациях, свёрнутых вправо и влево на 120˚
Очевидно, что Nt+Nd+Nl=N (N-полное число молекул). Таким образом, вещество представляет собой динамическую смесь конформаций, которую в этих случаях, принято называть поворотными изомерами или ротамерами, или конформерами.
Состав
термодинамически равновесной смеси
определяется разностью внутренних
энергий поворотных изомеров и
температурой. При
Nt=Nd=Nl=
1/3 N.
При понижении температуры вещество
кристаллизуется в форме одного наиболее
устойчивого ротамера.
При высотах барьера порядка нескольких ккал/моль время поворотной изомеризации, т.е. время превращения одного ротамера в другой ~10-10сек. (получено на основе теории абсолютных скоростей реакции). За такие времена ротамеры не могут быть отделены друг от друга. Наличие ротамеров в равновесной смеси устанавливается путем изучения химических и физических свойств. Пространственное строение ротамеров различно, значит, различаются и их спектры. Спектр вещества представляет собой результат наложения спектров ротамеров. За время жизни ротамера происходят приблизительно сотни и тысячи колебаний (частоты ~1012-1013 сек-1,при времени поворотной изомеризации ~10-10сек).
Впервые существование поворотной изомерии было установлено Кольраушем с помощью спектров комбинационного рассеяния. Отношение интенсивности спектральных линий, отвечающих различным ротамерам, зависит от их содержания в смеси. Оно меняется с температурой и, следовательно, разности энергии ротамеров E можно определить по температурному ходу интенсивностей спектральных линий. Так для Н-бутана E~0,6 ккал/моль. Информацию по ротамерии получают также с помощью ЯМР, электронографии, измерения дипольных моментов молекул и т.д.
|
Яндекс.Директ
Теоретический расчет величин Е можно провести с помощью потенциалов Китайгородского, Хилла и др. на полуэмпирической основе. Для молекул типа Н-бутана и более сложных приходится учитывать повороты вокруг нескольких связей. Энергия внутреннего вращения зависит соответственно от нескольких углов вращения и изображается уже не кривой, а поверхностью (вообще говоря, многомерной).
Изучение поворотной изомерии конформационных превращений молекул приобрело сейчас очень большое значение в органической и биоорганической химии. Химические и физико-химические свойства молекул существенным образом зависят от их конформаций. Главные особенности физического поведения макромолекул определяются поворотной изомерией.
