- •1. Предмет и задачи биофизики
- •2. Развитие и становление биофизики как науки
- •8. Колебательные процессы в биологии. Значение их теоретического исследования. Предельные циклы и тд.
- •9. Кинетика ферментативных реакций. Особенности механизма ферментативных процессов.
- •10. Стационарная кинетика ферментативных реакций.. Уравнение михаэлиса-ментен. Влияние различных факторов.
- •11. Множественность стационарных состояний биологических систем. Модели триггерного типа.
- •12. Влияние температуры на скорость реакций в био системах. Теория абсолютных скоростей реакций и активириванного комплекса.
- •19. Связь энтропии и информации в биологических системах. Понятия количества и ценности информации. Условия запасания, хранения и переработки информации в макромолекулярных системах.
- •20. Общие понятия стабильности конфигурации молекул, энергия связи. Макромолекула как основа организации биоструктур. Своеобразие макромолекул как физического объекта.
- •3.1.3. Электронные конфигурации двухатомных молекул
- •Анализ заселенностей орбиталей по Малликену. Понятие о зарядах и порядках связей.
- •2.3. Объёмное взаимодействие. Переходы глобула - клубок в биополимерах.
- •2.4. Условия существования клубка и глобулы.
- •2.5. Различные типы взаимодействия в макромолекулах.
- •2.7. Ориентационное взаимодействие.
- •2.8. Индукционное взаимодействие.
- •2.9. Дисперсионное взаимодействие.
- •2.10. Водородная связь и электростатические взаимодействия.
- •2.11. Физическая природа водородной связи.
- •2.12. Электростатические взаимодействия.
- •22. Факторы стабилизации макромолекул, надмолекулярных структур и биомембран.
- •23. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах. Переходы спираль-клубок.
- •24. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибриллярных и глобулярных белков.
- •25. Топология кольцевых замкнутых
- •27. Сворачивание полипептида в белковую глобулу
- •28. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •32. Современные представления о механизмах действия ферментов.
- •56. Типы фотохимических реакций
- •59. Кинетика фотобиологических процессов и зависимость от интенсивности света. Фотосенсибилизация.
- •61. Кинетика и физические механизмы переноса электрона в электронтранспортных цепях фотосинтеза. Механизмы сопряжения овр с трансмембранным переносом протона. Механизмы фосфорилирования.
- •62. Особенности и механизмы фотоэнергетических реакций бактериродопсина и зрительного пигмента родопсина.
- •64. Использование различных видов излучений в медицине, технике и с/х.
- •65. Первичные и начальные биологические процессы поглощения энергии ионизирующих излучений.
- •66. Единицы активности радионуклеотидов. Единицы доз ионизирующих излучений.
- •69.Действие малых доз и хронического облучения. Отдаленные последствия малых доз радиации на организм.
- •70. Факторы, модифицирующие лучевое поражение: радиопротекторы и радиосенсибилизаторы, их химическая природа и биологическое действие.
2.9. Дисперсионное взаимодействие.
Дисперсионное или поляризационное взаимодействие наблюдается между молекулами, которые не обладают постоянным дипольным моментом. Они обусловлены внешними слабосвязанными электронами. Природа дисперсионных взаимодействий носит квантомеханический характер и является результатом появления линейных диполей, возникающих в результате движения электронов в молекулах, но обладающих постоянным дипольным моментом.
Энергия притяжения, обусловленная дисперсионными силами:
,
где
-
частота колебаний (вращения) электрона;
f - частотный фактор {сравним с моментом
инерции}.
ТАБЛИЦА. Относительная роль разных видов сил ВВ для отдельных молекул.
Вещество |
*1024 см3 |
Р [D] |
Uор |
Uинд*105 Дж |
Uдисп |
H |
0.67 |
0.00 |
0.00 |
0.00 |
6.10 |
O2 |
1.51 |
0.00 |
0.00 |
0 |
39.80 |
H2O |
1.48 |
1.84 |
190.00 |
10.00 |
47.00 |
NH3 |
2.24 |
1.50 |
84.00 |
10.00 |
70.00 |
HCl |
2.63 |
2.63 |
19.00 |
5.40 |
111.00 |
Суммарное ВВ взаимодействие есть Uориент+Uинд+Uдисперс, и для полимеров составляет от 4 до 100 кДж/моль. Силы ВВ лежат в основе некоторых биоструктур и, в частности, биспиральных полинуклеотидов. Упаковка плоских молекул азотистых оснований в вертикальной пачке обеспечивается вертикальными взаимодействиями (стекинг), в которых сила ВВ вносит основной вклад.
2.10. Водородная связь и электростатические взаимодействия.
Наряду с силами Ван-дер-Ваальса, водородная связь и электростатические взаимодействия играют важнейшую роль в стабилизации макромолекулярных структур. В частности, водородная связь стабилизирует внутреннюю структуру полинуклеотидных цепей. Водородная связь осуществляется между атомом водорода одной молекулы и электроотрицательным атомом кислорода (О), азота (N), фтора (F), или хлора (Cl), принадлежащего другой молекуле (известны случаи образования и внутримолекулярных водородных связей). Природа водородной связи сложна и не сводится только к электростатическому притяжению, хотя оно и дает основной вклад в энергию водородной связи. Наряду с взаимодействиями Ван-дер-Ваальса и электростатическими силами, в энергию водородной связи (UH) вносит вклад энергия делокализации (Uделок.) 2-х электронов связи (А-Н) и неподеленной пары электронов другого атома. (А - какой-либо из 4-хэлектроотрицательных элементов). Энергия делокализации приводит к тому, что длина связи уменьшается. Например, для димера муравьиной кислоты:
Для
большинства полимеров энергия водородной
связи
оценивается:
Uн=Uэл/стат+Uдисп+Uделок+Uотталк, =>
U=-25.2-12.6-33.6+35.3=-36.1 кДж/моль.
Как правило, для большинства биополимеров Uн связи лежит в пределах 1235 кДж/моль.
