- •1. Предмет и задачи биофизики
- •2. Развитие и становление биофизики как науки
- •8. Колебательные процессы в биологии. Значение их теоретического исследования. Предельные циклы и тд.
- •9. Кинетика ферментативных реакций. Особенности механизма ферментативных процессов.
- •10. Стационарная кинетика ферментативных реакций.. Уравнение михаэлиса-ментен. Влияние различных факторов.
- •11. Множественность стационарных состояний биологических систем. Модели триггерного типа.
- •12. Влияние температуры на скорость реакций в био системах. Теория абсолютных скоростей реакций и активириванного комплекса.
- •19. Связь энтропии и информации в биологических системах. Понятия количества и ценности информации. Условия запасания, хранения и переработки информации в макромолекулярных системах.
- •20. Общие понятия стабильности конфигурации молекул, энергия связи. Макромолекула как основа организации биоструктур. Своеобразие макромолекул как физического объекта.
- •3.1.3. Электронные конфигурации двухатомных молекул
- •Анализ заселенностей орбиталей по Малликену. Понятие о зарядах и порядках связей.
- •2.3. Объёмное взаимодействие. Переходы глобула - клубок в биополимерах.
- •2.4. Условия существования клубка и глобулы.
- •2.5. Различные типы взаимодействия в макромолекулах.
- •2.7. Ориентационное взаимодействие.
- •2.8. Индукционное взаимодействие.
- •2.9. Дисперсионное взаимодействие.
- •2.10. Водородная связь и электростатические взаимодействия.
- •2.11. Физическая природа водородной связи.
- •2.12. Электростатические взаимодействия.
- •22. Факторы стабилизации макромолекул, надмолекулярных структур и биомембран.
- •23. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах. Переходы спираль-клубок.
- •24. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибриллярных и глобулярных белков.
- •25. Топология кольцевых замкнутых
- •27. Сворачивание полипептида в белковую глобулу
- •28. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •32. Современные представления о механизмах действия ферментов.
- •56. Типы фотохимических реакций
- •59. Кинетика фотобиологических процессов и зависимость от интенсивности света. Фотосенсибилизация.
- •61. Кинетика и физические механизмы переноса электрона в электронтранспортных цепях фотосинтеза. Механизмы сопряжения овр с трансмембранным переносом протона. Механизмы фосфорилирования.
- •62. Особенности и механизмы фотоэнергетических реакций бактериродопсина и зрительного пигмента родопсина.
- •64. Использование различных видов излучений в медицине, технике и с/х.
- •65. Первичные и начальные биологические процессы поглощения энергии ионизирующих излучений.
- •66. Единицы активности радионуклеотидов. Единицы доз ионизирующих излучений.
- •69.Действие малых доз и хронического облучения. Отдаленные последствия малых доз радиации на организм.
- •70. Факторы, модифицирующие лучевое поражение: радиопротекторы и радиосенсибилизаторы, их химическая природа и биологическое действие.
Анализ заселенностей орбиталей по Малликену. Понятие о зарядах и порядках связей.
Существует возможность количественно оценить клады различных АО в МО. Как уже отмечалось, используя разложение МО по линейным комбинациям АО i= сi (2.12), удобно ввести матрицу плотности (матрицу зарядов-порядков связей) P c элементами Р = j сjсj (суммирование ведется по занятым МО). Энергия молекулы с закрытыми оболочками записывается с помощью этой матрицы весьма компактно:
(3.5)
Матрица плотности описывает распределение электронной плотности по молекуле следующим образом (закрытые оболочки):
(3.6)
Перепишем последнее выражение таким образом, чтобы выделить вклады АО атомов I и J,
,
J (3.7)
и проинтегрирум левую и правую части (3.7). Учитывая, что АО нормированы, имеем:
(3.8)
(интеграл перекрывания S(I,J)=1, если =, I=J). Таким образом, полное число электронов молекулы N в приближении МО ЛКАО оказывается формально распределенным по атомам и связям между ними. Величина Р(I) есть электронная заселенность орбитали , центрированной на атоме I, а 2Р(I,J)S(I,J) –электронная заселенность перекрывания орбиталей и , центрированных на атомах I и J.
Малликен предложил оценивать электронные заселенности атомов, деля заселенности перекрывания орбиталей между рассматриваемой парой атомов поровну.
Тогда полное число электронов, приписывемое атому I, равно
,
I<J,
(3.9)
Полный заряд на атоме qI (эффективный заряд) вычисляется как разность
qI= ZI - QI , (3.10)
где ZI – заряд ядра атома I.
Ясно, что описанный метод анализа электронных заселенностей орбиталей дает лишь приближенную оценку распределения заряда по молекуле: получаемые величины зависят от используемых при расчете метода и базиса, а деление электронов между атомами без учета их природы неправомочно. Кроме того, в ортогональном базисе все электроны оказываются формально распределенными только между атомами. Тем не менее, анализ заселенностей орбиталей по Малликену проводится при выдаче результатов расчета по всем современным квантовохимическим программам.
Величины 2Р, следуя Коулсону, называют орбитальными зарядами, а 2Р -
порядками связей: отсюда и происходит название матрицы Р. Знак 2Р определяет конструктивная или деструктивная интерференция имеет место при взаимодействии данной пары АО. Полный порядок связи между атомами находят как сумму вкладов от перекрывания соответствующих АО.
Используя матрицу зарядов-порядков связей, легко вычислить дипольный момент молекулы:
(3.11)
Дипольный момент нейтральной молекулы не зависит от выбора начала отсчета.
Дипольные моменты молекул определяются измерением комплекной диэлектрической проницаемости как функции частоты и температуры, из ИК спектров и с помощью других методов. Сравнивая результаты расчета и измерений, можно оценить надежность проведенного исследования.
Макромолекулы как основа организации биологических структур. Основу структурной организации живого составляют макромолекулы, прежде всего важнейшие биополимеры – белки и нуклеиновые кислоты. В макромолекулах происходят сложные процессы трансформации Е, включающие миграцию Е электронного возбуждения и транспорт электронов. В основе функционирования макромолекул лежит электронно-конформационные взаимодействия, которые проявляются в самых различных процессах, где участвуют биологически активные макромолекулярные комплексы. Тепловые движения атомов, входящие в полипептидную цепь, их повороты и вращения вокруг связей приводят к созданию большого количества внутренних степеней свободы. Это приводит к свертыванию цепи и образованию клубков макромолекул – макроскопические системы, в которых проявляются статический характер параметров (размеры, формы, степень свертывания). Как физический объект их своеобразие проявляются в сочетании как статических, так и механических особенностей поведения макромолекул. С одной стороны большое число взаимодействий атомов создают большое количество степеней свободы и возможны создания различных конформаций, с другой стороны наличие химической связи между атомами ограничено -возможно образование конформеров. Взаимодействия атомов химической ковалентной связи определяет: 1. цепное строение биополимеров. 2. соединение друг с другом мономеров. Клетки и их органоиды – гетерогенные системы. Их существование и функц-ие опред-ся межмолекулярными взаимодействиями нековалентного характера (взаимодействуют слабо, потому что сильные взаимодействия создали бы устойчивые жестские структуры, лишенные молекулярной подвижности, а молекулярная подвижность необходима для выполнения различных задач (регуляция химических реакций, трансформация Е). Слабое взаимодействие в биологических системах: 1.Вандервальсовы силы, 2.Ионные связи, 3.Водородные связи, 4.Гидрофобные взаимодействия. Первичная структура – линейная. Важную роль в конформации полипептидов играют вандевальсовые силы, гидрофбные взаимодействия, водородные связи. Вторичная структура. Пептидная цепь в белках имеет спиральную конфигурацию (-спираль). Каждый атом H2 имеет избыточный «+» заряд, притягивающийся к «-» заряженному атому О2 в следующем витке спирали. Внутри образуются пептидные связи, а боковые радикалы аминокислот обращены наружу и могут взаимод-ть с молекулами окружающей среды. Спиральная конфигурация – вторичная. Структура полипептидной цепи спирализована неполностью. Инсулин – 60%. Причиной нарушения спирали являются: 1. Образование дисульфидных связей, которые могут соединить несколько спиралей между собой. В местах образования их ослабляется Н-связь и нарушается спирализация. 2.Наличие радикалов некоторых аминокислот, которые не укладываются в спираль и образуют отдельные складки, скрещивания водородных связей. Такие параллельно расположенные участки - - структура, - конфигурация представляет собой складчатую структуру, которая включает параллельные цепи, связанные водородной связью. Исследования показали, если в полипептидной цепи есть остатки Глу, Ала, Лей- образуются ά – спираль, а если Мет, Вал, Изолей, то - структура. В зав-ти от хар-ра вторичной структуры белки делятся на три группы: 1.Белки с преобладанием - структуры (гемоглобин, миоглобин). 2.Белки, упакованы по типу - структуры. 3.Смешанная вторичная структура. Третичная структура – строго упорядоченная в пространстве укладка спирали и несколько участков цепи. Каждый белок имеет свою конфигурацию. Это связано с тем, что свободные карбоксильные, гидроксильные, аминные и другие группы боковых радикалов, взаимодействующих между собой с образованием амидных сложных эфирных связей. Водородные связи соединяют остатки двух соседних цепей и образуются дусульфидные мостики. Это делает структуру полужесткой. Четвертичная структура: Объединение двух и более субъединиц. Третичная структура приводит к созданию сложной активной белковой молекулы. Гемоглобин: 4 глобулы. В случае глобулы полипептидная цепь свернутая в клубок – третичная. Наличие нескольких сшивок S-S накладывает ограничение на конформацию. Глобула формирует слабые взаимодействия (гидрофобные→ взаимодействия цепных молекул друг с другом). Собранные в пачки рассматриваются и образуются фибриллярные структуры, которые функционируют вне раствора и формируют надмолекулярные белковые структуры, которые состоят из большего количества макромолекул с невалентными взаимодействиями- это клеточные мембраны, хромосомы, глобулы, нити в молекулах. Нуклеиновые кислоты. Уотсон Крик – структура ДНК, которая представляет собой правовинтовую спираль, из двух полинуклеиновых цепей, при этом одна цепь обвита вокруг другой. Таким образом, пары гетероциклических оснований нах-ся внутри. Обе цепи соединены между собой Н-связями, которые возникают между гетероциклическими основаниями.
21. Общий характер объемных взаимодействий и влияние внешнего поля на стабильность конформации биополимеров. Фазовые переходы. Кооперативные свойства макромолекул. Различные типы объемных взаимодействий в макромолекулах. Водородные связи, силы Ван-дер-Ваальса и стабильность вторичной и третичной структур. Поворотная изомерия и энергия внутреннего вращения. Конформация полипептидной цепи.
Объѐмные взаимодействия Все взаимодействия между атомами независимо от их конкретной физической природы при формировании различных макромолекулярных структур и переходов между ними можно разделить на два типа: взаимодействия ближнего порядка между атомами соседних звеньев и дальние взаимодействия или объемные эффекты между атомами, которые хотя и отстоят по цепи далеко друг от друга, но случайно сблизились в пространстве в результате изгибания цепи. В стабилизации молекулы биополимера принимают участие следующие объѐмные взаимодействия: 1. Водородные связи
2. Электростатические силы
3. Ван-дер-Ваальсовы взаимодействия
4. Гидрофобные взаимодействия
