- •Лекционный материал по учебному предмету «Материаловедение»
- •2.Лекционный материал к теме №2 «Минеральные вяжущие вещества и добавки к ним»
- •Лекционный материал к теме №1 «Основные свойства строительных материалов »
- •Физические свойства
- •Химические свойства
- •Технологические свойства
- •Механические свойства
- •Лекционный материал к теме №2 «Минеральные вяжущие вещества и добавки к ним»
- •Лекционный материал к теме № 3 «Органические вяжущие вещества» Битумы и дегти
- •Клеи и технология склеивания
- •Модифицированная целлюлоза
- •Термопластичные полимеры
- •Термореактивные полимеры
- •Синтетический каучук
- •Лекционный материал к теме № 4 «Заполнители и наполнители для бетонов, смесей растворных и растворов строительных. Наполнители для мастик»
- •Природный песок
- •Речной песок
- •Классификация горных пород по происхождению
- •Тяжёлый искусственный песок
- •Крупные заполнители
- •Легкие заполнители, применяемые для строительных растворов, делят на неорганические и органические
- •Наполнители для мастик
- •Лекционный материал к теме № 5 «Композиции защитно-отделочные: грунтовки и шпатлевки»
- •Лекционный материал к теме № 6 «Строительные растворы, сухие растворные смеси и мастики»
- •Классификация строительных растворов
- •Свойства строительных растворов
- •Сухие смеси для обычных штукатурных растворов
- •Вода – растворитель
- •Растворы для зимних работ
- •Растворы декоративных штукатурок
- •Растворы, клеи и мастики для плиточных работ
- •Приготовление растворов
- •Лекционный материал к теме № 7 «Плиточные изделия» Классификация облицовочных материалов
- •Классификация облицовочных материалов по их предназначению
- •Классификация облицовок по материалу
- •Требования, предъявляемые к облицовочным материалам
- •Классификация облицовочной плитки по маркировке
- •Лекционный материал к теме № 8 «Вспомогательные материалы» Растворители и разбавители
- •Растворители лаков акриловые и нитроцеллюлозные
- •Разбавители эмали: синтетическая и акриловая
- •Разбавители для уретановой эмали
- •Моющий растворитель
- •Замедлители
- •Гидрофобизирующие (водоотталктвающие) жидкости
- •Абразивные шлифовальные материалы
- •Прокладочные и уплотнительные материалы
- •Теплоизоляционные материалы
- •Гидроизоляционные материалы
- •Электроизоляционные материалы
- •Крепежные изделия
Технологические свойства
Свойства, выражающие способность материала к восприятию определенных технологических операций с целью изменения формы, размеров, характера поверхности, плотности, называют технологическими.
Из бетонной или растворной смеси нетрудно отформовать изделие заданной формы и требуемых размеров. Во время изготовления изделие можно уплотнить вибрированием, трамбованием или другими приемами, оштукатурить и загладить его поверхность. Примером технологического материала является древесина. Технологичны металлы, их обрабатывают в холодном, нагретом и расплавленном состоянии. Из глины можно отформовать изделия любой формы, а после сушки и обжига получить неразмокающий в воде керамический каменный материал, весьма прочный и долговечный.
Удобоукладываемость – технологическое свойство строительного раствора легко укладываться тонким и плотным слоем на пористое основание и не расслаиваться при транспортировании, перекачивании насосами и хранении. Удобоукладываемость зависит от подвижности и водоудерживающей способности растворной смеси.
Адгезия — свойство одного материала прилипать к поверхности другого. Адгезия двух различных материалов зависит от природы материала, формы и состояния поверхности, условий контакта и т. д. Она появляется и развивается в результате сложных поверхностных явлений, возникающих на границе раздела фаз, и характеризуется прочностью сцепления при отрыве одного материала от другого. Важное значение адгезионные свойства имеют при получении композиционных материалов и изделий (бетонов разных видов, клееных изделий и конструкций, отделочных материалов).
Вязкость — способность материала поглощать механическую энергию при деформировании образцов. Когда пластично-вязкий материал начинает течь, напряжения в материале зависят уже от скорости его деформации. Коэффициент пропорциональности, связывающий скорость деформации и необходимое для этого напряжение, называют вязкостью.
Водоудерживающая способность характеризуется свойством раствора не расслаиваться при транспортировании и сохранять достаточную влажность в тонком слое на пористом основании. Растворная смесь, имеющая низкую водоудерживающую способность, при транспортировании расслаивается, а при укладке на пористое основание (керамический кирпич, бетон, дерево,) быстро отдает ему воду.
Подвижность растворной смеси определяют глубиной погружения в смесь металлического конуса массой 300 г с углом при вершине 30°.
Подвижность растворной смеси зависит, прежде всего, от количества воды и вяжущего, вида вяжущего и заполнителя, соотношения между вяжущим и заполнителем.
К технологическим свойствам готовых к употреблению лакокрасочных материалов относят степень перетертости красок (чем тоньше растерта краска, тем легче ее наносить на поверхность), время и степень высыхания материала, условная вязкость, розлив, способность покрытий шлифоваться и полироваться.
Механические свойства
Механические свойства характеризуются способностью материала сопротивляться сжатию, растяжению, удару, вдавливанию в него постороннего тела и другим видам воздействий на материал с приложением силы.
Прочность — свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки. Изучением этого свойства материалов занимается специальная наука — сопротивление материалов.
Материалы, находясь в сооружении, могут испытывать различные нагрузки. Наиболее характерными для строительных конструкций являются сжатие, растяжение, изгиб и удар. Каменные материалы (гранит, бетон) хорошо сопротивляются сжатию и намного хуже (в 5...50 раз) — растяжению, изгибу, удару, поэтому каменные материалы используют главным образом в конструкциях, работающих на сжатие. Такие материалы, как металл и древесина, хорошо работают на сжатие, изгиб и растяжение, поэтому их используют в конструкциях, испытывающих эти нагрузки.
Прочность строительных материалов характеризуется пределом прочности. Пределом прочности (Па) называют напряжение, соответствующее нагрузке, вызывающей разрушение образца материала.
Предел прочности при сжатии различных материалов 0,5... 1000 МПа и более. Прочность на сжатие определяют испытанием образцов на механических или гидравлических прессах. Прочность определяют на образцах материала, форму и размеры которых устанавливает стандарт на этот материал. Так, для оценки прочности бетона приняты образцы-кубы размером 150 × 150 × 150 мм.
Предел прочности бетона при сжатии обычно 10…50 МПа. Чтобы разрушить бетонный куб размером 150×150×150 мм, надо приложить усилие F =10× (0.15× 0,15) = 0,225 МН. Поэтому для испытания материалов применяют специальные машины, снабженные механизмом для силового воздействия на образец и измерительными устройствами. Так, предел прочности при сжатии определяют с помощью гидравлических прессов.
Рис. 2. Растяжение (б), изгиб (в) и срез (г)
Аналогично определяют прочность при растяжении, изгибе, скалывании. Однако расчетные формулы при изгибе и скалывании имеют другой вид.
Прочность при сжатии, растяжении и изгибе у одного и того же материала может сильно различаться. У всех каменных материалов прочность при сжатии в 5… 15 раз выше, чем при изгибе и растяжении. У древесины, наоборот, прочность при изгибе немного выше прочности при сжатии. Интересно отметить, что прочность древесины при сжатии вдоль волокон близка к прочности бетона, а при изгибе она прочнее бетона более чем в 10 раз.
Рис. 3. Схема гидравлического пресса для испытания на сжатие: 1 — станина, 2 — поршень, 3, 5 — нижняя и верхняя опорные плиты, 4 — испытуемый образец. 6 — маховик для ручного подъема и опускания верхней плиты, 7 — манометр, 8 — масляный насос
На прочность материала оказывают влияние не только форма и размер образца, но и характер его поверхности, и скорость приложения нагрузки. Поэтому для получения сравнимых результатов нужно придерживаться стандартных методов испытания, установленных для данного материала.
Прочность зависит также от структуры материала, его плотности (пористости), влажности, направления приложения нагрузки. На изгиб испытывают образцы в виде балочек, расположенных на двух опорах и нагруженных одним или двумя сосредоточенными грузами, увеличиваемыми до тех пор, пока балочки не разрушатся.
Твердость — способность материала сопротивляться проникновению в него другого более твердого тела. Твердость не всегда соответствует прочности материала. Для определения твердости существует несколько методов.
Твердость каменных материалов оценивают по шкале Мооса, состоящей из десяти минералов, расположенных по степени возрастания их твердости. Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один чертит, а другой чертится этим материалом. Твердость металлов и пластмасс определяют вдавливанием стального шарика. От твердости материалов зависит их истираемость. Это свойство материала важно при обработке, а также при использовании его для полов, дорожных покрытий.
Истираемость материала характеризуется потерей первоначальной массы, отнесенной к 1м площади истирания. Сопротивление истиранию определяют для материалов, предназначенных для полов, дорожных покрытий, лестничных ступеней и др.
Износом называют разрушение материала при совместном действии истирания и удара. Прочность при износе оценивается потерей в массе, выраженной в процентах. Износу подвергают материалы для дорожных покрытий и балласта, железных дорог.
Сопротивление удару имеет большое значение для материалов, применяемых в полах и дорожных покрытиях. Предел прочности материала при ударе (Дж/м3) характеризуется количеством работы, затраченной на разрушение образца, отнесенной к единице объема материала. Испытание материалов на удар производят на специальном приборе — копре.
Деформация — изменение размеров и формы материалов под нагрузкой. Если после снятия нагрузки образец материала восстанавливает свои размеры и форму, то деформацию называют упругой, если же он частично или полностью сохраняет изменение формы после снятия нагрузки, то такую деформацию называют пластической.
Упругость — свойство материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры. Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают некоторой очень малой величины (устанавливаемой техническими условиями на данный материал).
Пластичность — свойство материала изменять свою форму под нагрузкой без появления трещин (без нарушения сплошности) и сохранять эту форму после снятия нагрузки. Все материалы делятся на пластичные и хрупкие. К пластичным материалам относят сталь, медь, глиняное тесто, нагретый битум и т. п. Хрупкие материалы разрушаются внезапно без значительной деформации. К ним относят каменные материалы. Хрупкие материалы хорошо сопротивляются только сжатию и плохо — растяжению, изгибу, удару.
