- •Курс лекций
- •Раздел 1. Гидравлика
- •1.1. Основные физические свойства жидкостей и газов. Гидростатика.
- •1.1.1. Основные физические свойства жидкости
- •Реальная и идеальная жидкость.
- •1.1.2. Гидростатика Абсолютный и относительный покой (равновесие) жидких сред. Силы, действующие в жидкостях
- •Гидростатическое давление и его свойства
- •Основное уравнение гидростатики
- •Принцип действия гидростатических машин
- •Избыточное давление. Способы выражения гидростатического давления
- •Суммарное давление жидкости на плоскую поверхность
- •Центр давления жидкости на плоскую поверхность
- •Графический способ определения величины суммарного давления жидкости на плоскую поверхность и положения центра давления
- •Суммарное давление жидкости на криволинейную поверхность
- •1.2. Основы кинематики и динамики жидкости
- •1.2.1. Основы кинематики жидкости Общий характер движения жидких частиц
- •Кинематические элементы движущейся жидкости
- •Уравнение сплошности (неразрывности) течения
- •Понятие о потоке жидкости
- •Гидравлические элементы потока жидкости
- •Виды движения жидкости Неустановившееся и установившееся движение
- •Неравномерное и равномерное движение жидкости
- •Напорное и безнапорное движение жидкости
- •Режимы движения жидкости
- •Сопротивления при ламинарном и турбулентном движении
- •Распределение скоростей в потоке при ламинарном и турбулентном режимах
- •1.2.2. Основы динамики жидкости Методы изучения движения жидкости
- •Дифференциальное уравнение движения идеальной жидкости
- •Общая интегральная форма уравнений количества движения и момента количества движения
- •Конечно-разностные формы решения уравнений движения жидкости
- •Уравнение д. Бернулли для элементарной струйки идеальной жидкости Вывод уравнения Бернулли для элементарной струйки идеальной жидкости
- •Геометрический смысл уравнения Бернулли
- •Энергетический смысл уравнения Бернулли
- •Уравнение Бернулли для элементарной струйки реальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Учет гидродинамических явлений в технике Взаимосвязь уравнения неразрывности и уравнения Бернулли
- •Кавитация
- •Измерение скорости потока и расхода жидкости
- •1.3. Одномерное движение жидкости и газа
- •1.3.1. Гидравлические сопротивления Виды гидравлических сопротивлений
- •Основные понятия о потерях напора (энергии) на гидравлических сопротивлениях
- •Потери напора на трение по длине потока
- •Потери напора от местных сопротивлений
- •1.3.2. Движение несжимаемой жидкости в трубах Применение уравнения Бернулли и принципа сложения потерь напора к расчету коротких водопроводных труб
- •Из уравнения неразрывности для потока жидкости следует:
- •Построение пьезометрической линии
- •Гидравлический расчет длинных трубопроводов
- •Водопроводная формула
- •Обозначив
- •Расчет простого водопровода
- •Получим
- •Расчет элементов сложного трубопровода
- •Б. Параллельное соединение труб.
- •1.3.3. Движение сжимаемой жидкости (газа) Основные физические свойства газов
- •Общее уравнение энергии в интегральной и дифференциальной формах
- •Уравнение д.Бернулли для газов
- •Число Маха
- •Основные закономерности одномерного движения газа Зависимость между скоростью звука и скоростями течения сжимаемой жидкости
- •Зависимость между изменениями сечения и скоростью течения потока сжимаемой жидкости
- •Зависимость между изменениями плотности и скоростью течение потока сжимаемой жидкости
- •Применение уравнения Бернулли к расчету движения газа по трубам
- •1.3.4. Истечение жидкости через отверстия и насадки Классификация отверстий и основные характеристики истечений
- •Истечение из малого отверстия в тонкой стенке
- •Расход жидкости, вытекающей из отверстия будет равен
- •Истечение из большого отверстия в тонкой стенке
- •Истечение жидкости через насадки при постоянном напоре
- •Внешняя цилиндрическая насадка (рис. 3 – 1).
- •Истечение жидкости при переменном напоре
- •1.3.5. Движения жидкости в открытых руслах Виды движения жидкости
- •Типы открытых русл
- •Удельная энергия сечения
- •Критическая глубина
- •Бурное и спокойное состояние потока
- •Расчетные характеристики равномерного движения в открытых руслах
- •Гидравлические элементы поперечного профиля канала
- •Основные зависимости для расчета равномерного движения в призматических руслах
- •Поделив все члены уравнения (1 – 1) на вес жидкости ..L и группируя все слагаемые с одинаковыми индексами, получим:
- •Формула Шези
- •Гидравлически наивыгоднейшее сечение трапецеидального канала
- •Гидравлический показатель русла
- •Допускаемые скорости течения в каналах
- •Методы расчета равномерного движения в каналах
- •Особенности расчет равномерного безнапорного движения в каналах замкнутого поперечного профиля
- •Приближенные расчеты равномерного движения в естественных руслах
- •Основные задачи при гидравлическом расчете каналов
- •Параметры неравномерного движения жидкости в открытых руслах
- •Основное уравнение неравномерного движения
- •Удельная энергия сечения потока
- •Критическое, спокойное и бурное состояние потока
- •Гидравлический прыжок
- •Уравнения неравномерного плавноизменяющегося движения жидкости в непризмагических руслах
- •Дифференциальные уравнения неравномерного плавноизменяющегося движения в призматических руслах
- •Общий анализ дифференциальных уравнений неравномерного движения в призматических руслах
- •Формы свободной поверхности при неравномерном плавноизменяющемся движении в призматических руслах
- •Типы задач при расчете неравномерного движения жидкости в призматических руслах
- •Прямые задачи расчета неравномерного движения жидкости в призматических руслах
- •Обратные задачи расчета неравномерного движения жидкости в призматических руслах
- •Построение кривых свободной поверхности потока неравномерного движения жидкости в непризматических руслах
- •Построение кривых свободной поверхности потока неравномерного движения жидкости в естественных руслах
- •1.3.6. Водосливы
- •Классификация водосливов
- •Расход через прямоугольный водослив
- •Бреши в плотинах. Расход воды через бреши
- •1.3.7. Относительное движение жидкости и твердого тела Общие понятия
- •Сопротивление трения при обтекании плоской пластины
- •Отрыв пограничного слоя
- •Распределение давления по поверхности обтекаемого тела. Сопротивление давления
- •Суммарное сопротивление при обтекании твердого тела
- •Сопротивление воды движению плавающих средств
- •Составляющие силы полного сопротивления
- •Влияние гидродинамической поддерживающей силы Rz
- •Подъёмная сила
- •Аэродинамические сила и момент
- •Аэродинамические коэффициенты профиля
- •Определение аэродинамических коэффициентах профиля
- •Осаждение (всплывание) твердых частиц, капель жидкости и газовых пузырей в жидкости
- •Скорость равномерного осаждения или всплывания твердого тела в жидкости.
- •Особенности осаждения (всплывания) капель жидкости и газовых пузырей.
- •1.3.8. Распространение возмущений, вызванных местным изменением давления Гидравлический удар
- •Определение повышения давления в трубопроводе
- •Пути борьбы с гидравлическим ударом
- •Ударные волны в газах
- •Ударные волны, как одно из важных проявлений сжимаемости газа
- •1.3.9. Движение грунтовых вод
- •Основной закон ламинарной фильтрации
- •Равномерное безнапорное движение грунтовых вод
- •Формула Дюпюи
- •Неравномерное безнапорное плавноизменяющееся движение грунтовых вод, плоская задача
- •Приток воды к грунтовому колодцу
- •Приток воды к водосборной галерее
- •Расчет осушительной сети (дренажей)
- •1.3.10. Виды движения воды в открытых руслах
- •Неустановившееся движение воды в открытых руслах
- •Примеры неустановившихся потоков
- •Расчет неустановившегося течения
- •Параметры волн прорыва, методы их расчета
- •График движения волны прорыва
- •Графики интенсивности изменения характеристик затопления во времени
- •2.1.11. Гидравлика мостов
- •Требования сНиП по расчет мостов на воздействие водного потока (сНиП 2.05.03-84. Мосты и трубы)
- •Методы расчета отверстий мостов и общих деформаций подмостовых русел
- •Для определения глубины под мостом и ширины отверстия моста
- •2.1.12. Гидравлическое моделирование Виды моделей
- •Геометрическое, кинематическое и динамическое подобие. Коэффициенты подобия
- •Полное и частичное динамическое подобие. Критерии динамического подобия
- •Основные правила гидравлического моделирования
- •Моделирование напорных потоков
- •Моделирование безнапорных потоков
- •Моделирование при геометрическом искажении модели
- •Воздушно-напорное моделирование потоков со свободной поверхностью
- •Моделирование движения наносов и размывов русла
- •Натурные исследования
- •Раздел 2. Гидрология
- •2.1. Общие определения речной гидрологии
- •2.1.1. Предмет гидрологии и гидрометрии
- •2.1.2. Круговорот воды в природе Определение круговорота воды в природе
- •Водный баланс
- •2.1.3 Водные ресурсы
- •2.1.4. Сток воды и его характеристики Основные понятия о стоке воды
- •Гидрологические характеристики стока
- •Факторы, влияющие на величину стока
- •2.1.5. Гидрографическая сеть и речная система Типы водных объектов
- •Водосборы и водоразделы
- •Гидрографическая сеть
- •2.1.6. Общая характеристика рек
- •2.1.7. Морфометрические и гидрографические характеристики рек
- •Морфометрические характеристики реки
- •2.1.8. Динамика речного потока
- •2.1.9. Гидрографические характеристики рек
- •2.1.10. Движение наносов и русловые процессы Образование наносов
- •Механизм взвешивания и перемещение наносов
- •Режим стока наносов
- •Расход взвешенных наносов
- •Распределение взвешенных наносов
- •2.1.11. Русловые деформации Русловые процессы и русловые деформации
- •Типы русловых процессов
- •Способы определения устойчивости и подвижности русел рек
- •2.1.12. Каналы
- •2.1.13. Водоемы и болота
- •2.1.14. Болота
- •2.2. Речная гидрометрия
- •2.2.1. Организация гидрологических наблюдений Мониторинг водных объектов
- •Состав и организация Гидрометрической службы в рф
- •Организация наблюдений и обработки данных
- •2.2.2. Непосредственное измерение характеристик реки Измерение уровней и глубины воды
- •6.2.1.1. Определение уровня (глубины) воды: а) мерной рейкой; б) лотом ; в) эхолотом
- •Измерение скоростей течения в реке
- •Определение расходов воды в реке
- •Определение расходов воды речных потоков аэрогидрометрическими методами
- •Определение расходов воды речных потоков по уклону и живому сечению
- •Определение расходов наносов и мутности
- •Измерение толщины льда
- •2.2.3. Обработка результатов измерений Графики колебаний уровней
- •Кривые связи уровней воды по водомерным постам.
- •Гидрограф
- •Кривые связи расходов и уровней воды в реке
- •2.3. Гидрологические расчеты
- •2.3.1. Задачи и содержание расчетов по определению гидрологических характеристик
- •2.3.2. Нормативные документы
- •2.3.3. Гидрологическое прогнозирование
- •2.3.2. Применение математической статистики для определения расчетных гидрологических характеристик Методы получения гидрологических характеристик стока
- •Прогнозирование расходов воды в реке при наличии данных гидрометрических наблюдений
- •Прогнозирование расходов воды в реке расчетной вероятностью превышения (обеспеченностью) при отсутствии данных гидрометрических наблюдений
- •Прогнозирование максимальных расходов воды в реке расчетной вероятностью превышения (обеспеченностью)
- •2.3.3. Краткие сведения о регулировании речного стока Комплексное использование водных ресурсов
- •Задачи и виды регулирования стока
- •Регулирование высокого стока
- •Заключение
Геометрическое, кинематическое и динамическое подобие. Коэффициенты подобия
После исследований, выполненных на модели, необходимо перенести полученные данные на натурный объект, что и является конечной целью моделирования. При физическом моделировании это можно сделать достаточно надежно лишь в том случае, если есть уверенность, что явления в натуре и на модели подобны.
Физическое подобие явлений заключается в подобии полей соответствующих физических параметров двух систем (натуры и модели), как в пространстве, так и во времени, т. е. в пропорциональности, характеризующих их сходственных параметров. В частности, механическое подобие двух потоков жидкости предполагает наличие геометрического, кинематического и динамического подобия.
Естественно потоки считать механически подобными, если геометрические, кинематические и динамические величины, характеризующие натурный поток, могут быть получены из соответствующих величин модельного потока, взятых в сходственных точках и в сходственные моменты времени, простым умножением на постоянные множители, называемые коэффициентами подобия (масштабами).
Геометрическое подобие заключается в том, что сходственные линейные элементы натурного и модельного объектов находятся в одинаковом соотношении:
lм/lн=m, (7-1)
где 1н - длина линейного элемента в натуре; 1м - длина сходственного модельного элемента; т - геометрический масштаб (коэффициент геометрического подобия).
Очевидно, сходственные площади ωн и ωм находятся в соотношении
(7.2)
а отношение сходственных объемов соответственно равно
Vн/Vм = mv = m3. (7.3)
При обеспечении геометрического подобия углы между двумя сходственными направлениями (βн и βм одинаковы: βн = βм, β=idem (idem - значит «одно и то же»).
Кинематическое подобие заключается в подобии полей скоростей и ускорений натуры и модели, которое выполняется, если скорости uн и им и ускорения jн и jм в сходственных точках натуры и модели находятся в одинаковых соотношениях, т. е. существует масштаб скоростей тu и масштаб ускорений mj, т. е.
uн/им= тu=const; jн /jм= mj=const.
Масштабы скорости и ускорений связаны с геометрическим масштабом. Действительно, так как сходственные расстояния натурные и модельные частицы проходят за сходственные отрезки времени tн и tм, то существует и масштаб времени:
tн/tм=mt= const. (7.4)
Но натурная и модельная скорости выражаются через сходственные отрезки пути и времени
uн=lн/tн и uм=lм/tм,
откуда
тu = uн/им = lн/ tм /( lм/ tн) =mmt-1.(7.5)
Аналогичным путем получим для масштаба ускорений
mj= jн/jм = mmj -2.(7.6)
Таким образом, кинематическое подобие возможно лишь при обеспечении геометрического подобия.
Динамическое подобие состоит в подобии многоугольников сил, действующих на сходственные частицы (имеющие сходственные массы Мн и Мм).
Так как
Fн=Мн jн,= ρнVнjн, а Fм= Мм jм=ρмVмjм, то
mF = Fн/Fм,= ρнVнjн /( ρмVмjм)=трт3тj= mpm3m/mt2 = трт2 тu 2 = const. (7.7)
Полученное соотношение называется законом динамического подобия Ньютона в коэффициентах подобия.
Из полученного выражения следует, что для обеспечения динамического подобия требуется выполнить условия геометрического и кинематического подобия и что основными масштабами являются масштабы длины, силы и времени. Эти условия являются необходимыми. Как правило, они и достаточны, однако доказательство их достаточности затруднено разнообразием начальных и граничных условий, которые на практике выполняются лишь с некоторой степенью приближения.
