- •Курс лекций
- •Раздел 1. Гидравлика
- •1.1. Основные физические свойства жидкостей и газов. Гидростатика.
- •1.1.1. Основные физические свойства жидкости
- •Реальная и идеальная жидкость.
- •1.1.2. Гидростатика Абсолютный и относительный покой (равновесие) жидких сред. Силы, действующие в жидкостях
- •Гидростатическое давление и его свойства
- •Основное уравнение гидростатики
- •Принцип действия гидростатических машин
- •Избыточное давление. Способы выражения гидростатического давления
- •Суммарное давление жидкости на плоскую поверхность
- •Центр давления жидкости на плоскую поверхность
- •Графический способ определения величины суммарного давления жидкости на плоскую поверхность и положения центра давления
- •Суммарное давление жидкости на криволинейную поверхность
- •1.2. Основы кинематики и динамики жидкости
- •1.2.1. Основы кинематики жидкости Общий характер движения жидких частиц
- •Кинематические элементы движущейся жидкости
- •Уравнение сплошности (неразрывности) течения
- •Понятие о потоке жидкости
- •Гидравлические элементы потока жидкости
- •Виды движения жидкости Неустановившееся и установившееся движение
- •Неравномерное и равномерное движение жидкости
- •Напорное и безнапорное движение жидкости
- •Режимы движения жидкости
- •Сопротивления при ламинарном и турбулентном движении
- •Распределение скоростей в потоке при ламинарном и турбулентном режимах
- •1.2.2. Основы динамики жидкости Методы изучения движения жидкости
- •Дифференциальное уравнение движения идеальной жидкости
- •Общая интегральная форма уравнений количества движения и момента количества движения
- •Конечно-разностные формы решения уравнений движения жидкости
- •Уравнение д. Бернулли для элементарной струйки идеальной жидкости Вывод уравнения Бернулли для элементарной струйки идеальной жидкости
- •Геометрический смысл уравнения Бернулли
- •Энергетический смысл уравнения Бернулли
- •Уравнение Бернулли для элементарной струйки реальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Учет гидродинамических явлений в технике Взаимосвязь уравнения неразрывности и уравнения Бернулли
- •Кавитация
- •Измерение скорости потока и расхода жидкости
- •1.3. Одномерное движение жидкости и газа
- •1.3.1. Гидравлические сопротивления Виды гидравлических сопротивлений
- •Основные понятия о потерях напора (энергии) на гидравлических сопротивлениях
- •Потери напора на трение по длине потока
- •Потери напора от местных сопротивлений
- •1.3.2. Движение несжимаемой жидкости в трубах Применение уравнения Бернулли и принципа сложения потерь напора к расчету коротких водопроводных труб
- •Из уравнения неразрывности для потока жидкости следует:
- •Построение пьезометрической линии
- •Гидравлический расчет длинных трубопроводов
- •Водопроводная формула
- •Обозначив
- •Расчет простого водопровода
- •Получим
- •Расчет элементов сложного трубопровода
- •Б. Параллельное соединение труб.
- •1.3.3. Движение сжимаемой жидкости (газа) Основные физические свойства газов
- •Общее уравнение энергии в интегральной и дифференциальной формах
- •Уравнение д.Бернулли для газов
- •Число Маха
- •Основные закономерности одномерного движения газа Зависимость между скоростью звука и скоростями течения сжимаемой жидкости
- •Зависимость между изменениями сечения и скоростью течения потока сжимаемой жидкости
- •Зависимость между изменениями плотности и скоростью течение потока сжимаемой жидкости
- •Применение уравнения Бернулли к расчету движения газа по трубам
- •1.3.4. Истечение жидкости через отверстия и насадки Классификация отверстий и основные характеристики истечений
- •Истечение из малого отверстия в тонкой стенке
- •Расход жидкости, вытекающей из отверстия будет равен
- •Истечение из большого отверстия в тонкой стенке
- •Истечение жидкости через насадки при постоянном напоре
- •Внешняя цилиндрическая насадка (рис. 3 – 1).
- •Истечение жидкости при переменном напоре
- •1.3.5. Движения жидкости в открытых руслах Виды движения жидкости
- •Типы открытых русл
- •Удельная энергия сечения
- •Критическая глубина
- •Бурное и спокойное состояние потока
- •Расчетные характеристики равномерного движения в открытых руслах
- •Гидравлические элементы поперечного профиля канала
- •Основные зависимости для расчета равномерного движения в призматических руслах
- •Поделив все члены уравнения (1 – 1) на вес жидкости ..L и группируя все слагаемые с одинаковыми индексами, получим:
- •Формула Шези
- •Гидравлически наивыгоднейшее сечение трапецеидального канала
- •Гидравлический показатель русла
- •Допускаемые скорости течения в каналах
- •Методы расчета равномерного движения в каналах
- •Особенности расчет равномерного безнапорного движения в каналах замкнутого поперечного профиля
- •Приближенные расчеты равномерного движения в естественных руслах
- •Основные задачи при гидравлическом расчете каналов
- •Параметры неравномерного движения жидкости в открытых руслах
- •Основное уравнение неравномерного движения
- •Удельная энергия сечения потока
- •Критическое, спокойное и бурное состояние потока
- •Гидравлический прыжок
- •Уравнения неравномерного плавноизменяющегося движения жидкости в непризмагических руслах
- •Дифференциальные уравнения неравномерного плавноизменяющегося движения в призматических руслах
- •Общий анализ дифференциальных уравнений неравномерного движения в призматических руслах
- •Формы свободной поверхности при неравномерном плавноизменяющемся движении в призматических руслах
- •Типы задач при расчете неравномерного движения жидкости в призматических руслах
- •Прямые задачи расчета неравномерного движения жидкости в призматических руслах
- •Обратные задачи расчета неравномерного движения жидкости в призматических руслах
- •Построение кривых свободной поверхности потока неравномерного движения жидкости в непризматических руслах
- •Построение кривых свободной поверхности потока неравномерного движения жидкости в естественных руслах
- •1.3.6. Водосливы
- •Классификация водосливов
- •Расход через прямоугольный водослив
- •Бреши в плотинах. Расход воды через бреши
- •1.3.7. Относительное движение жидкости и твердого тела Общие понятия
- •Сопротивление трения при обтекании плоской пластины
- •Отрыв пограничного слоя
- •Распределение давления по поверхности обтекаемого тела. Сопротивление давления
- •Суммарное сопротивление при обтекании твердого тела
- •Сопротивление воды движению плавающих средств
- •Составляющие силы полного сопротивления
- •Влияние гидродинамической поддерживающей силы Rz
- •Подъёмная сила
- •Аэродинамические сила и момент
- •Аэродинамические коэффициенты профиля
- •Определение аэродинамических коэффициентах профиля
- •Осаждение (всплывание) твердых частиц, капель жидкости и газовых пузырей в жидкости
- •Скорость равномерного осаждения или всплывания твердого тела в жидкости.
- •Особенности осаждения (всплывания) капель жидкости и газовых пузырей.
- •1.3.8. Распространение возмущений, вызванных местным изменением давления Гидравлический удар
- •Определение повышения давления в трубопроводе
- •Пути борьбы с гидравлическим ударом
- •Ударные волны в газах
- •Ударные волны, как одно из важных проявлений сжимаемости газа
- •1.3.9. Движение грунтовых вод
- •Основной закон ламинарной фильтрации
- •Равномерное безнапорное движение грунтовых вод
- •Формула Дюпюи
- •Неравномерное безнапорное плавноизменяющееся движение грунтовых вод, плоская задача
- •Приток воды к грунтовому колодцу
- •Приток воды к водосборной галерее
- •Расчет осушительной сети (дренажей)
- •1.3.10. Виды движения воды в открытых руслах
- •Неустановившееся движение воды в открытых руслах
- •Примеры неустановившихся потоков
- •Расчет неустановившегося течения
- •Параметры волн прорыва, методы их расчета
- •График движения волны прорыва
- •Графики интенсивности изменения характеристик затопления во времени
- •2.1.11. Гидравлика мостов
- •Требования сНиП по расчет мостов на воздействие водного потока (сНиП 2.05.03-84. Мосты и трубы)
- •Методы расчета отверстий мостов и общих деформаций подмостовых русел
- •Для определения глубины под мостом и ширины отверстия моста
- •2.1.12. Гидравлическое моделирование Виды моделей
- •Геометрическое, кинематическое и динамическое подобие. Коэффициенты подобия
- •Полное и частичное динамическое подобие. Критерии динамического подобия
- •Основные правила гидравлического моделирования
- •Моделирование напорных потоков
- •Моделирование безнапорных потоков
- •Моделирование при геометрическом искажении модели
- •Воздушно-напорное моделирование потоков со свободной поверхностью
- •Моделирование движения наносов и размывов русла
- •Натурные исследования
- •Раздел 2. Гидрология
- •2.1. Общие определения речной гидрологии
- •2.1.1. Предмет гидрологии и гидрометрии
- •2.1.2. Круговорот воды в природе Определение круговорота воды в природе
- •Водный баланс
- •2.1.3 Водные ресурсы
- •2.1.4. Сток воды и его характеристики Основные понятия о стоке воды
- •Гидрологические характеристики стока
- •Факторы, влияющие на величину стока
- •2.1.5. Гидрографическая сеть и речная система Типы водных объектов
- •Водосборы и водоразделы
- •Гидрографическая сеть
- •2.1.6. Общая характеристика рек
- •2.1.7. Морфометрические и гидрографические характеристики рек
- •Морфометрические характеристики реки
- •2.1.8. Динамика речного потока
- •2.1.9. Гидрографические характеристики рек
- •2.1.10. Движение наносов и русловые процессы Образование наносов
- •Механизм взвешивания и перемещение наносов
- •Режим стока наносов
- •Расход взвешенных наносов
- •Распределение взвешенных наносов
- •2.1.11. Русловые деформации Русловые процессы и русловые деформации
- •Типы русловых процессов
- •Способы определения устойчивости и подвижности русел рек
- •2.1.12. Каналы
- •2.1.13. Водоемы и болота
- •2.1.14. Болота
- •2.2. Речная гидрометрия
- •2.2.1. Организация гидрологических наблюдений Мониторинг водных объектов
- •Состав и организация Гидрометрической службы в рф
- •Организация наблюдений и обработки данных
- •2.2.2. Непосредственное измерение характеристик реки Измерение уровней и глубины воды
- •6.2.1.1. Определение уровня (глубины) воды: а) мерной рейкой; б) лотом ; в) эхолотом
- •Измерение скоростей течения в реке
- •Определение расходов воды в реке
- •Определение расходов воды речных потоков аэрогидрометрическими методами
- •Определение расходов воды речных потоков по уклону и живому сечению
- •Определение расходов наносов и мутности
- •Измерение толщины льда
- •2.2.3. Обработка результатов измерений Графики колебаний уровней
- •Кривые связи уровней воды по водомерным постам.
- •Гидрограф
- •Кривые связи расходов и уровней воды в реке
- •2.3. Гидрологические расчеты
- •2.3.1. Задачи и содержание расчетов по определению гидрологических характеристик
- •2.3.2. Нормативные документы
- •2.3.3. Гидрологическое прогнозирование
- •2.3.2. Применение математической статистики для определения расчетных гидрологических характеристик Методы получения гидрологических характеристик стока
- •Прогнозирование расходов воды в реке при наличии данных гидрометрических наблюдений
- •Прогнозирование расходов воды в реке расчетной вероятностью превышения (обеспеченностью) при отсутствии данных гидрометрических наблюдений
- •Прогнозирование максимальных расходов воды в реке расчетной вероятностью превышения (обеспеченностью)
- •2.3.3. Краткие сведения о регулировании речного стока Комплексное использование водных ресурсов
- •Задачи и виды регулирования стока
- •Регулирование высокого стока
- •Заключение
Распределение давления по поверхности обтекаемого тела. Сопротивление давления
Распределение давления вокруг обтекаемого твердого тела неразрывно связано с законом изменения скорости набегающего потока вблизи тела. Рассмотрим простой случай обтекания бесконечно длинного кругового цилиндра потенциальным потоком. При обтекании кругового цилиндра бесконечно большой длины потенциальным потоком картина течения у цилиндра симметрична (рис. 17.8).
Известно (см. 17.1.3), что на участках АВ и AD движение ускоренное, на участках ВС и DC замедленное, в критических точках на поверхности цилиндра А и С скорость равна нулю, в точках В и D - удвоенной скорости невозмущенного потока. Поэтому в критических точках давление принимает максимальное значение, а в точках В и D - минимальное. Вследствие симметрии рассматриваемой задачи давление в сходственных точках (например, в точках 1 и 1', 2 и 2' и т. п.) одинаковое.
Аналогичная картина течения получается при обтекании цилиндра потоком невязкой жидкости.
Рис. 17.8. Обтекание цилиндра невязкой жидкостью
Следовательно, силы давления на лобовую и кормовую поверхности цилиндра будут равными, но противоположно направленными. Их равнодействующая равна нулю, а значит, и сопротивление цилиндра должно равняться нулю. Этот вывод, который противоречит данным опыта, в гидромеханике известен под названием парадокса Эйлера - Даламбера.
На рис. 17.9 приведена схема распределения давления по поверхности кругового цилиндра, обтекаемого потенциальным потоком или потоком невязкой жидкости.
Рис. 17.9. Распределение давления при обтекании цилиндра невязкой жидкостью
На схеме область давления, большего давления невозмущенного потока, отмечена знаком плюс и стрелками, направленными к поверхности цилиндра; область меньшего, чем в набегающем потоке, давления - знаком минус и стрелками, направленными от поверхности цилиндра.
При обтекании цилиндра потоком вязкой жидкости вследствие отрыва пограничного слоя и образования отрывного течения давление в лобовой части цилиндра всегда оказывается больше давления в его кормовой части (рис. 17.10 5.18). Равнодействующая этих сил давления, отличная от нуля, и определяет собой сопротивление давления. В пределах гидродинамического следа давление остается практически постоянным и равным давлению у твердой поверхности в точке отрыва пограничного слоя, давление же у лобовой поверхности практически не отличается от давления при взаимодействии цилиндра с невязкой жидкостью.
Рис. 17.10. Распределение давления при обтекании цилиндра вязкой жидкостью
При увеличении числа Re, вычисленного по скорости набегающего потока, равнодействующая сил давления в лобовой и кормовой частях цилиндра увеличивается, что связано со смещением точки отрыва пограничного слоя ближе к кормовой области. Смещение точки отрыва объясняется переходом ламинарного пограничного слоя в турбулентный при возрастании числа Рейнольдса. В результате частицы жидкости, находящиеся вблизи твердой границы, приобретают дополнительную кинетическую энергию от невозмущенного потока, которая помогает им дольше противостоять положительному градиенту давления (рис. 17.10).
На практике при сравнении распределения давления на поверхности обтекаемых тел разных размеров часто используется относительное давление или коэффициент давления
(17.15)
где
- избыточное давление в произвольной
точке на поверхности обтекаемого тела;
- динамическое давление
невозмущенного потока.
Если в качестве избыточного
принимается манометрическое давление
,
коэффициент давления называют
аэродинамическим коэффициентом
(17.16)
Аэродинамический коэффициент используется для расчета распределения давления ветра по поверхности зданий и сооружений.
Рассмотрим схему распределения аэродинамических коэффициентов по контуру одиночного здания с двускатной крышей (рис. 17.11).
Рис. 17.11. Распределение аэродинамических коэффициентов при обтекании одиночного здания
Построение эпюры распределения
аэродинамических коэффициентов
производится по известным правилам
построения эпюры нагрузки на любой
элемент сооружения: положительные
значения
откладываются внутри
контура здания, отрицательные - вне
контура здания. Отметим, что аэродинамический
коэффициент приобретает положительное
значение при полном давлении, большем
атмосферного давления, отрицательное
- при разрежении.
Так как форма современных зданий и сооружений весьма далека от удобообтекаемой, можно принимать, что независимо от числа Рейнольдса аэродинамический коэффициент является функцией только формы здания и его расположения по отношению к направлению набегающего невозмущенного потока.
Обычно значение аэродинамического коэффициента и его распределение определяются по результатам экспериментальных испытаний, проводимых либо в гидравлических лотках, либо в аэродинамических трубах.
При фронтальном обтекании одиночного здания (рис. 17.11) аэродинамический коэффициент принимает значения: на наветренной (лобовой) грани КВ=0,5-0,8, на заветренной (кормовой) грани КВ= -(0,2-0,3). Необходимо сказать, что при фронтальном обтекании здания наветренная сторона испытывает повышенное давление (КВ>0), а стороны, находящиеся в области отрывных течений, - разрежение КВ <0. Разрежение может вызвать равнодействующие силы давления, значительно большие, чем положительные, - это особенно опасно, так как конструктивные элементы рассчитаны на точно такие же усилия, но противоположные по знаку.
При расчете высоких зданий и сооружений следует учитывать распределение скоростей набегающего потока по вертикали. В первом приближении это распределение оценивается с помощью, например, уравнения Г. Шлихтинга
,
где и -
скорость на произвольном расстоянии h
от поверхности земли;
- скорость на достаточно
большом расстоянии
,
где она становится
практически постоянной.
Неравномерность распределения давлений по поверхности обтекаемого тела, разность давлений в его лобовой и кормовой частях в ряде случаев являются основными факторами, определяющими сопротивление, называемое сопротивлением давления. Обычно это случаи обтекания потоком жидкости или газа тонких профилей, расположенных поперек набегающего потока.
Рассмотрим обтекание
плоского круглого диска (рис. 17.12) потоком
вязкой жидкости (толщина диска
существенно меньше его диаметра d).
Рис. 17.12. Обтекание диска потоком вязкой жидкости
Очевидно, в рассматриваемом случае силами трения следует пренебречь, так как длина участка возможного формирования пограничного слоя δ ничтожна по условию. Поэтому сила сопротивления будет определяться только разностью давления перед диском и в области отрывного течения за ним. Расчетная формула для силы сопротивления давления имеет вид
(17.18)
где
- коэффициент сопротивления давления;
- площадь сечения обтекаемого тела
по миделю (площадь проекции тела на
плоскость, перпендикулярную векторам
скорости набегающего потока);
- плотность жидкости или газа;
- скорость невозмущенного
потока.
Коэффициент , зависит от числа Рейнольдса и от формы обтекаемого тела. При больших числах Рейнольдса, т. е. в случае отсутствия влияния вязкости, коэффициент сопротивления давления зависит только от формы тела (табл. 17.1).
При определении силы давления ветра на одиночное здание или на его отдельные элементы достаточно знать закон распределения аэродинамических коэффициентов и соответствующие площади граней, воспринимающих повышенное давление или разрежение.
В этом случае можно составить очевидное расчетное соотношение. Из выражения (17.16) следует, что манометрическое давление в произвольной точке на поверхности здания
(17.19)
Сила давления
(17.20)
где dS - площадь элементарной поверхности здания или его отдельного элемента, в пределах которой аэродинамический коэффициент можно считать постоянным.
После подстановки уравнения (17.19) в формулу (17.20) получим
(17.21)
Уравнение (17.21) решается для каждого конкретного случая.
Таблица 17.1
Значения коэффициента сопротивления давления для некоторых тел с острой кромкой
Форма обтекаемого тела |
|
Диск |
1,11 |
Прямоугольная пластина с отношением a/b: |
|
1 |
1,10 |
2 |
1,15 |
4 |
1,19 |
10 |
1,29 |
∞ |
2,01 |
Круговой цилиндр при обтекании в направлении его оси при l/d: |
|
1 |
0,91 |
2 |
0,85 |
4 |
0,87 |
7 |
0,99 |
