Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рабочий учебник - Множества и соответствия 3346.01.01;РУ.01;1.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.74 Mб
Скачать

3. Алгебраические операции

3.1. Операции на множестве

1. Пример однозначного соответствия между множествами чисел X и Y – функция y = f(x). Функция двух переменных z = f(x, y) сопоставляет числовое значение z паре чисел (x, y).

Функцию можно рассматривать как операцию над элементами числового множества: так, одноместная операция y = преобразует число 9 в число 3, число 5 - в число = 2,236... Аналогично, двуместная операция z = xy преобразует пару чисел (3, 5) в число 15, другая операция z = x + y сопоставляет той же паре число 8.

Общее понятие алгебраической операции на множестве: элементам множества М сопоставляется элемент того же или другого множества. Операции можно разделить на одноместные, двуместные (называемые также бинарными), трехместные и т.д. Общее обозначение бинарной операции: φ(a, b) или a φ b. Арифметические действия сложения a + b, вычитания ab, умножения a · b, деления a / b, возведения в степень ab – бинарные операции (в то же время, операция возведения числа в квадрат или в куб, т.е. в конкретную степень – одноместные операции). Двуместная операция скалярного произведения сопоставляет двум векторам число. Операции над множествами: объединение, пересечение, разность – двуместные; операция дополнения – одноместная. Также двуместной является операция декартова произведения двух множеств А В.

Операции преобразований плоскости – сжатия, растяжения, отражения, повороты – переводят одни точки плоскости в другие. Алгебраическая операция может применяться и к элементам разных множеств: пример – умножение вектора на число: .

2. Множество М называется замкнутым относительно операции φ, если применение операции не выводит за пределы множества М, т.е. всякий результат операции над элементами множества М также принадлежит М.

Примеры. 1. Множества действительных, рациональных, целых чисел замкнуты относительно операций сложения (это значит, что, например, сумма двух целых чисел – целое число), а также вычитания, умножения, причем первые два множества замкнуты и относительно операции деления (исключая деление на 0). Множество целых чисел не замкнуто относительно деления.

2. Множество четных целых чисел замкнуто относительно операций сложения и умножения: сумма и произведение четных чисел также четны. Напротив, множество нечетных чисел не замкнуто относительно операции сложения.

Упражнение. 1. Замкнуто ли относительно вычитания множество четных чисел (т.е. всегда ли четна сумма четных чисел)?

2. Замкнуто ли относительно умножения множество нечетных чисел (т.е. всегда ли нечетно произведение нечетных чисел)?

3. Определите, замкнуто ли относительно операции извлечения квадратного корня множество: а) действительных чисел; б) положительных действительных чисел; в) целых чисел.

4. Тот же вопрос для операции возведения числа в квадрат.

Система А = (L; Ω), состоящая из множества L и набора операций Ω = {φ1, φ2,..., φk}, действующих на множестве L, называют алгеброй (так что алгебра – не только математическая дисциплина, но и вполне определенная структура). Множество L (оно должно быть замкнутым относительно операций системы Ω) называется носителем, а система операций Ω – сигнатурой алгебры А.

Примеры. 1. (R; +, •), (N; +, •), (Z; +, •), – алгебры на множестве соответственно, действительных, натуральных и целых чисел с операциями сложения и умножения (при сложении и умножении чисел каждого из этих множеств результат принадлежит тому же множеству).

2. (F; D) и (FЭ; D), где F – множество дифференцируемых функций действительной переменной, FЭ - множество элементарных функций; D – оператор дифференцирования, ставящий в соответствие каждой функции ее производную.

3. Изоморфизмом двух алгебр А = (L; φ1, φ2,..., φk) и В = (M; ψ1, ψ2,..., ψk), называется взаимно однозначное соответствие Г между множествами L = {l} и M = {m} и между операциями φi и ψi, при котором выполнено:

Г(φi (l)) = ψi (Г(l)) для всех l, φi, ψi.

Подчеркнем, что изоморфизм – это не просто взаимно однозначное соответствие (его – для конечных множеств – можно установить между любыми двумя множествами с одинаковым числом элементов). Смысл этого понятия состоит в том, что если выполнить в алгебре A какие-либо операции над определенными элементами множества L и соответствующие операции в алгебре B над соответствующими элементами множества M, то результаты операций также будут соответствовать друг другу.

Примеры. 1. Алгебры (Z; +) и (Z3; +), где Z3 – множество целых чисел, кратных трем, изоморфны, в силу соответствия Г = n → 3n. Так, например, сложению 5 + 8 = 13 будет соответствовать сложение 15 + 24 = 39, что можно проиллюстрировать схемой

n: 5 + 8 = 13;

3n: 15 + 24 = 39.

2. Алгебры (R+; •) и (R; +), где R+ - множество положительных действительных чисел, изоморфны в силу соответствия Г = a → log a (ввиду тождества log ab = log a + log b). Это также проиллюстрируем схемой

a: 8 • 64 = 512;

↓log2 ↓log2 ↓log2 ↓log2 (3 = log2 8; 6 = log2 64; 9 = log2 512);

log a: 3 + 6 = 9.

В этом примере только для наглядности участвуют целые степени числа 2, при этом их двоичные логарифмы - целые числа.

Противоположный пример: алгебры (Z; +) и (Z2; +), где Z2 – множество целочисленных двумерных векторов, не изоморфны. Хотя оба множества Z и Z2 – счетны, т.е. между ними можно (многими способами) установить взаимно однозначное соответствие, но не удастся сделать это так, чтобы сумма векторов, поставленных в соответствие двум числам, всегда соответствовала сумме этих чисел. Конечно, это требует доказательства, но мы его здесь не приводим.

Особое значение имеет следующий пример. Булеан В(U), очевидно, является замкнутым относительно операций объединения, пересечения и дополнения: результат любой из этих операций над подмножествами универсального множества U - также одно из его подмножеств. Система В(U) с операциями (, ∩ , ‾‾) называется алгеброй множеств на U, или алгеброй Кантора.

Алгебры (U; ) и (U; ∩) на булеане В(U) произвольного множества U изоморфны. Изоморфизм устанавливается соответствием Г(L) = , LU.

В самом деле, Г(L1L2) = = [в силу закона де Моргана] = 1 2 = Г(L1) ∩ Г(L2).

Как видно из рассмотренных примеров, если алгебры А и В изоморфны, то элементы и операции В можно переименовать так, что В совпадет с А. Из основного равенства в опреде-лении изоморфизма следует, что любое эквивалентное соотношение в алгебре А сохраняется в каждой изоморфной ей алгебре В. Это позволяет, получив такие соотношения в алгебре А, автоматически распространить их на все алгебры, изоморфные А. Распространенное в математике выражение «рассматривать объекты с точностью до изоморфизма» означает, что рассматриваются только те свойства объектов, которые сохраняются при изоморфизме, т.е. являются общими для всех изоморфных объектов.

Установление изоморфизма между какими-либо системами имеет большое практическое значение. Оно сродни точному переводу на другой язык описания явлений. Когда, например, аналитическая геометрия устанавливает соотношения между геометрическими объектами – линиями или поверхностями и их аналитическими представлениями в виде уравнений, или в курсе математического анализа мы выясняем геометрический смысл производной, дифференциала или интеграла, мы получаем возможность выбирать и использовать при исследованиях и в прикладных задачах наиболее удобное для данного случая представление. В некоторых задачах изоморфизм систем служит основанием для моделирования объектов и их взаимодействия.