Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бхо.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
39.14 Кб
Скачать

Вода - один из важнейших компонентов окружающей среды, необходимый для жизнедеятельности организмов и систем в целом. Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, льды) — 361,13 млн км2. Доля пресной составляет около 2,5 %, причём 98,8 % этой воды находится в ледниках и грунтовых водах. Менее 0,3 % всей пресной воды содержится в реках, озёрах и атмосфере, и ещё меньшее количество (0,003 %) находится в живых организмах[ ].

В настоящее время происходит загрязнение гидросферы сточными водами промышленных предприятий объемом несколько миллиардов кубических метров в год, содержащими следующие вредные вещества: нефтепродукты, фенолы, легко - окисляемые органические вещества, соединения меди, цинка, тяжелые металлы (медь, цинк, свинец, кадмий, никель, ртуть), сульфаты, хлориды, а в отдельных регионах страны аммонийный и нитритный азот, анилин, формальдегид.

Особенно опасны ионы тяжелых металлов, обладающие мутагенными свойствами и нарушающие эмбриогенез.

Проблема удаления тяжелых металлов из сточных вод предприятий сейчас особенно актуальна. Плохо очищенные сточные воды поступают в природные водоёмы, где тяжелые металлы накапливаются в воде и донных отложениях, становясь, таким образом, источником вторичного загрязнения. Соединения тяжёлых металлов сравнительно быстро распространяются по объёму водного объекта. Штрафные санкции за сброс тяжелых металлов в воду становятся все жестче, но это не решает проблемы[].

Тяжелые металлы поступают в организм человека с едой и водой. Когда содержание тяжелых металлов в организме превышает предельно-допустимые концентрации, начинается их отрицательное воздействие на человека. Помимо прямых последствий в виде отравления, возникают и косвенные — ионы тяжелых металлов засоряют каналы почек и печени, чем снижают способность этих органов к фильтрации. Вследствие этого в организме накапливаются токсины и продукты жизнедеятельности клеток, что приводит к общему ухудшению здоровья человека.

Имеется много исследований по очистке вод от различных вредных примесей. Достигнуты крупные успехи по разработке и внедрению способов биологической очистки бытовых и ряда других отходов. В то же время, несмотря на то, что микробиологическая трансформация и детоксикация отдельных металлов и их соединений уже достаточно полно изучена, биологическая очистка от них промышленных сточных вод находится на стадии разработки и становления[].

Микроорганизмы по разному реагируют на тяжелые металлы. Ряд микроорганизмов способны осуществлять активный транспорт тяжелых металлов внутрь клеток [7].

Сульфатредукторы — одна из самых древних физиологических групп бактерий. Осаждать сульфиды металлов способны не только облигатные сульфатредукторы, но и микроорганизмы, использующие менее окисленные соединения серы в дыхательной цепи, селекционированные штаммы бактерий pода Pseudomonas, обладающие способностью к сульфатредукции. В результате их деятельности хорошо растворимые токсичные сульфаты восстанавливаются до практически нерастворимых, выпадающих в осадок форм. В результате деятельности сульфатвосстанавливающих бактерий из сточных вод осаждаются сульфиды кобальта, никеля, кадмия, железа, свинца, цинка и другие [8].

Цель работы: обосновать особенности работы комплексной технологии биохимической очистки промышленных стоков на предприятиях оборонно-промышленного комплекса.

Объект: сульфатвосстанавливающие бактерии, планируемые к использованию в комплексной технологии биохимической очистки промышленных стоков на ОАО «Курганмашзавод».

Предмет: особенности работы комплексной технологии биохимической очистки промышленных стоков на предприятиях оборонно-промышленного комплекса.

Гипотеза:

биохимические методы очистки сточных вод гальванических цехов на предприятиях оборонно-промышленного комплекса имеют преимущества перед химическими, физико-химическими и биологическими методами.

Задачи:

1. Провести теоретическое обоснование выбора технологии биохимической очистки сточных вод на ОАО «Курганмашзавод»;

2. Исследовать состояние сульфатвосстанавливающих бактерий при различных условиях загрязнения сточных вод;

3. Полученные результаты подвергнуть анализу и обобщению.

Глава 1.

Все существующие методы очистки сточных вод гальванических цехов можно разделить на химические, физико-химические и биологические.

К химическим методам относится и реагентный способ очистки, реализуемый на предприятии в настоящее время. Суть метода

Введение к работе

Актуальность проблемы

В настоящее время большую научно-техническую проблему представляет экологическая защита природной среды от загрязнения ее отходами промышленных производств и бытовыми стоками населенных пунктов. Попадание органических и минеральных загрязнений в водные и почвенные бассейны происходит при сбросе коммунальных и промышленных сточных вод, образующихся при реализации технологических процессов производства и переработки продукции и в процессе жизнедеятельности людей. Отличительная черта сточных вод, сбрасываемых на городские очистные сооружения, состоит в том, что они, в основном освобожденные от крупных включений минерального происхождения, в значительной степени загрязнены органическими веществами. В связи с этим возникает необходимость строительства сложных очистных сооружений, обеспечивающих показатели очистки от органических соединений, заданные государственными природоохранными органами.

Очистка высоко загрязненных стоков имеет ряд особенностей, которые существенно усложняют применение обычных, широко распространенных методов обработки органо-содержащих сточных вод. Сточные воды городских коммунальных служб содержат широкий спектр органических углерод-, азот- и фосфорсодержащих загрязнений, находящихся в диспергированном, коллоидном и растворенном состояниях. Диспергированные загрязнения (в основном крупно- и средне-дисперсные частицы), находящиеся во взвешенном состоянии, отделяют от сточной воды различными способами в процессе механической обработки (в основном, путем гравитационного осаждения в первичных отстойниках) и выводят из очистных сооружений на иловые площадки. Органические вещества, находящиеся в мелкодисперсном, коллоидном и растворенном состояниях, подвергаются биологическим методам обработки, в процессе

9 которых реализуются биохимические процессы их окисления микроорганизмами активного ила. При этом, эффективность работы сооружений биологической очистки (аэротенков, биофильтров, вторичных отстойников) во многом определяется концентрацией загрязнений сточных вод, предварительно прошедших механическую очистку.

Активный ил, функционирующий в очистных сооружениях, является живым консорциумом, который имеет сложную структуру. Биоценоз активного ила состоит в основном из микроорганизмов, связанных трофическими и метаболитными процессами, в результате которых происходит очистка сточных вод.

Управление смешанными культурами микроорганизмов в условиях непрерывных процессов биохимического окисления органических загрязнений является одним из перспективных путей максимального использования биологической активности и окислительной способности микроорганизмов активного ила. В этой связи изучение кинетики роста, жизнедеятельности и отмирания смешанных микробных популяций в биомассе активного ила является актуальной и важной задачей. Правильный выбор эффективных технологических схем очистки и оптимизация составов биоценозов активного ила являются основными путями достижения высоких показателей очистки и снижения избыточных биомасс активного ила. Целенаправленное регулирование жизнедеятельности микробных популяций способствует снижению содержания . патогенной микрофлоры в сточных водах до санитарно-показательных норм и получению максимальной эффективности биохимических процессов окисления микроорганизмами органических загрязнений.

Высокие требования государственных природоохранных органов к чистоте сточных вод, сбрасываемых в открытые водоемы и водотоки культурно-бытового и рыбохозяйственного назначения, приводят к необходимости разработки эффективных и, как правило, многоступенчатых систем очистки. Современные традиционные очистные сооружения содержат

10 участок механической очистки сточных вод от крупнодисперсных загрязнений органического и минерального происхождения, участка биологической очистки сточных вод от мелкодисперсных и коллоидных загрязнений органического происхождения в аэротенках с помощью диспергированных в сточной воде микроорганизмов активного ила и участка биологической доочистки сточных вод от трудноокисляемых органических загрязнений в сооружения типа биофильтр и биореактор.

В то же время следует отметить, что возможности методов биологической очистки к настоящему времени далеко не полностью исчерпаны. Актуальность проблемы интенсификации процессов биологической очистки сточных вод несомненна, т.к. повышение технико-экономических показателей этого способа обработки при широких масштабах его применения позволит дать значительный экономический эффект народному хозяйству страны.

Одним из основных путей интенсификации аэробной биологической очистки сточных вод является повышение концентрации взаимодействующих компонентов, участвующих в процессе, микроорганизмов и растворенного кислорода. Для достижения этих целей разработаны сооружения с повышенными дозами активного ила, с применением технического кислорода, с более эффективным использованием кислорода, с более производительными аэраторами и т.д. Однако и эти возможности оказались не беспредельными главным образом из-за ограниченной интенсивности диффузионных процессов в аэрационных сооружениях. Как показывают работы последних лет, для преодоления этого недостатка необходимо обеспечить большую продолжительность контакта обрабатываемой среды с источником кислорода, увеличить поверхность раздела фаз «жидкость-кислород» и осуществить более быстрое обновление их границ. Реализация этих направлений привела, с одной стороны, к созданию глубоких (шахтных) аэротенков, а с другой - к использованию биологических систем с прикрепленной (иммобилизованной) микрофлорой.

В последние десятилетия в научно-технической литературе растет количество работ, посвященных применению систем, использующих иммобилизацию микроорганизмов на носителях.

Прикрепление микроорганизмов к твердому носителю увеличивает продолжительность их пребывания в реакционной среде. Последнее обстоятельство имеет немаловажное значение с учетом затрат на утилизацию больших количеств биомассы активного ила. В биологических слоях, образующихся на твердой поверхности носителя, при стационарном режиме работы биореактора устанавливается равновесие между процессами прироста биопленки и вымывания ее из слоя носителя, В связи с этим отпадает необходимость в рециркуляции биомассы, принципиально необходимой при очистке сточных вод в традиционных аэротенках, работающих на дисперсной биомассе. К тому же следует отметить меньшую влажность биопленки по сравнению с биомассой активного ила традиционных аэротенков, а значит и более эффективное отделение биопленки от очищенной воды во вторичных отстойниках.

Для аэробных биологических иммобилизованных систем важно и то, что в трехфазной среде, состоящей из жидкости, газа и твердого носителя, увеличивается эффективность использования кислорода. Доза прикрепленной биомассы активного ила, развивающейся на поверхности твердого носителя, составляет 30 г/л и выше по беззольному веществу, что совершенно недостижимо для традиционных аэротенков при любом способе сгущения активного ила.

Однако, несмотря на перечисленные выше преимущества, метод иммобилизации микроорганизмов на твердом носителе еще не нашел широкого применения в промышленности. Это объясняется тем, что имеющиеся сведения о биологической очистке с применением техники иммобилизации биомассы в научно-технической литературе не систематизированы, часто носят противоречивый характер и, как правило, недоступны широкому кругу специалистов в области очистки промышленных сточных вод.

Значительно затрудняет внедрение в практику очистки сточных вод иммобилизации биомассы микроорганизмов отсутствие единой методики расчета и рекомендаций по аппаратурному оформлению процесса очистки в промышленных условиях. Имеющиеся литературные данные о высокой эффективности применения техники иммобилизации для биологического удаления углеродсодержащей органики, нитрификации и денитрификации либо содержат разрозненный материал, либо совершенно непригодны для практического использования при проектировании очистных сооружений. Разработка промышленной технологии биологической очистки сточных вод в иммобилизованных слоях требует проведения широких экспериментальных и теоретических исследований физических и биологических процессов как в лабораторных, так и в производственных условиях. Такие исследования, включающие изучение гидродинамики и кинетики биологических процессов синтеза биомассы и усвоения органических загрязнений сточных вод, позволят обеспечить создание наиболее рациональных и эффективных конструктивных схем сооружений аэробной биологической очистки.

Создание эффективной многоступенчатой системы очистки требует проведения большого объема научно-исследовательских и доводочных работ для получения оптимальных конструктивно-технологических решений и внедрения их в промышленных масштабах в системах очистки производственных и хозяйственно-бытовых стоков.

Одним из наиболее эффективных методов решения указанной проблемы является проведение экспериментально-теоретических исследований, позволяющих получить в конечном счете разработанные на основе балансового анализа математические модели технологических процессов очистки с эмпирическими коэффициентами, полученными путем аппроксимации экспериментальных зависимостей, полученных с помощью физических моделей.

Разработанные экспериментально-расчетные модели технологических процессов биологической очистки должны учитывать также и

13 микробиологические модели реализуемых процессов, поэтому наряду с гидравлическими и технологическими моделями необходим комплекс микробиологических работ для выявления доминирующих биоценозов на разных этапах биологической очистки.

Разработанные на основе анализа гидравлических, массообменных, технологических и микробиологических данных эмпирико-математические модели позволяют не только надежно и с высокой точностью прогнозировать процессы в системах биологической очистки, но и управлять ими для получения максимальной эффективности очистки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]