- •Раздел III. Соединения с однородными функциями глава 8. Галогенопроизводные углеводородов
- •§ 35. Моногалогенопроизводные предельных углеводородов
- •§ 36. Изомерия. Номенклатура
- •§ 37. Способы получения
- •§ 38. Физические свойства
- •§ 39. Химические свойства
- •Глава 9. Ди- и полигалогенопроизводные предельных углеводородов
- •§ 40. Изомерия. Номенклатура
- •§ 41. Способы получения
- •§ 42. Физические свойства
- •§ 43. Химические свойства
- •Глава 10. Галогенопроизводные непредельных углеводородов
- •Глава 11. Ароматические галогенопроизводные
- •§ 44. Способы получения
- •§ 45. Физические свойства
- •§ 46. Химические свойства
- •Глава 12. Гидроксильные соединения и их производные
- •§ 47. Изомерия
- •§ 48. Номенклатура
- •§ 49. Правило составления названий алканолов с разветвленной цепью по Международной единой химической номенклатуре iupac (июпак)
- •§ 50. Получение спиртов
- •§ 51. Физические свойства
- •§ 52. Химические свойства
- •I. Реакции замещения
- •II. Реакции отщепления
- •III. Реакция окисления
- •§ 53. Номенклатура. Физические свойства
- •§ 54. Отдельные представители (этиленгиколь, глицерин)
- •§ 55. Номенклатура. Изомерия
- •§ 56. Физические свойства
- •§ 57. Химические свойства
- •I. Реакции с участием гидроксильной группы
- •§ 58. Способы получения
- •§ 59. Применение фенола
- •Глава 13. Карбонильные соединения
- •§ 60. Изомерия. Номенклатура
- •§ 61. Способы получения
- •§ 62. Физические свойства
- •§ 63. Химические свойства
- •I. Реакции окисления
- •1. Окисление окисью серебра (реакция “серебряного зеркала”).
- •2. Окисление гидроокисью меди
- •II. Реакции присоединения
- •1. Линейная полимеризация
- •2. Циклическая полимеризация (тримеризация, тетрамеризация)
- •IV. Реакции поликонденсации
- •§ 64. Применение важнейших альдегидов
- •§ 65. Физические свойства
- •§ 66. Химические свойства
- •I. Реакции присоединения к карбонилу
- •II. Реакции замещения кислорода карбонильной группы кетона
- •III. Реакции, обусловленные превращениями в радикалах кетонов
- •§ 67. Способы получения
- •Глава 14. Карбоновые кислоты
- •§ 68. Строение. Номенклатура
- •§ 69. Природные источники и способы получения
- •§ 70. Физические свойства
- •§ 71. Химические свойства
- •§ 72. Отдельные представители (муравьиная кислота, уксусная кислота)
- •§ 73. Номенклатура
- •§ 74. Способы получения
- •§ 75. Отдельные представители (акриловая кислота, метакриловая кислота)
- •§ 76. Номенклатура
- •§ 77. Способы получения
- •1. Окисление двупервичных гликолей:
- •2. Гидролиз (омыление) динитрилов:
- •§ 78. Физические и химические свойства
- •§ 79. Отдельные представители (щавелевая кислота, молоновая кислота, янтарная кислота, адипиновая кислота, фталевая кислота, терефталевая кислота)
- •Физические свойства
- •Химические свойства
- •Глава 15. Азотсодержащие органические соединения
- •§ 80. Изомерия. Номенклатура
- •§ 81. Способы получения
- •§ 82. Физические свойства
- •§ 83. Химические свойства
- •§ 84. Отдельные представители
- •§ 85. Получение
- •§ 86. Физические свойства
- •§ 87. Химические свойства
- •§ 88. Отдельные представители (нитробензол, тринитробензол)
- •§ 89. Строение. Изомерия. Номенклатура
- •§ 90. Физические свойства
- •§ 91. Способы получения
- •§ 92. Химические свойства
- •§ 93. Отдельные представители
- •§ 94. Изомерия. Номенклатура
- •§ 95. Способы получения
- •§ 96. Физические свойства
- •§ 97. Отдельные представители
Физические свойства
По агрегатному состоянию жиры подразделяются на жидкие и твёрдые (при комнатной температуре). Твёрдые жиры, как правило, образованы предельными кислотами. Жидкие жиры (их часто называют маслами) образованы непредельными кислотами.
Жиры растворимы в органических растворителях и нерастворимы в воде.
Химические свойства
1. Гидролиз или омыление жиров происходит под действием воды (обратимо) или под действием щелочей (необратимо):
а) кислотный гидролиз жиров
б) щелочной гидролиз жиров (омыление)
2. Гидрогенизация жиров – процесс присоединения водорода к остаткам непредельных кислот, входящих в состав жиров. При этом остатки непредельных кислот переходят в остатки предельных кислот, и жидкие жиры превращаются в твёрдые (эту реакцию проводят на маргариновых заводах)
3. Жидкие жиры, взаимодействуя с кислородом воздуха, способны образовывать твёрдые плёнки – сшитые полимеры
4. При длительном хранении под действием влаги, кислорода воздуха, света и тепла жиры приобретают неприятный запах и вкус. Этот процесс называется прогорканием. Неприятный запах и вкус обусловлены появлением в жирах продуктов их превращения – свободных жирных кислот, гидроксикислот, альдегидов и кетонов.
Мыла
Мылами называются соли высокомолекулярных органических кислот. Обыкновенные мыла состоят, в основном, из смеси натриевых солей пальмитиновой (C15H31COOH), стеариновой (C17H35COOH) и олеиновой (C17H33COOH). Калийное мыло имеет вид мази и носит название жидкого мыла. Обычное мыло получают с помощью реакции “омыления” жиров.
В жёсткой воде (содержащей ионы кальция и магния) моющая способность мыла уменьшается. Взаимодействуя с ионами кальция и магния, мыла образуют нерастворимые кальциевые и (или) магниевые соли
2C17H35COO- + 2Na+ + Ca2+ + 2HCO3- → (C17H35COO)2Ca +2Na+ + 2HCO3-
В результате этого мыло образует вместо пены плёнку на поверхности воды и расходуется бесполезно.
Глава 15. Азотсодержащие органические соединения
Из органических соединений содержащих азот, рассмотрим нитросоединия, амины, нитрилы и изонитрилы.
НИТРОСОЕДИНЕНИЯ
Предельные
нитросоединения имеют общую формулу
или
.
§ 80. Изомерия. Номенклатура
Изомерия нитросоединений начинается, как и в случае монозамещенных углеводородов (спиртов, галогеналкилов и др.) с производных пропана.
Различают первичные – R – CH2 – NO2, вторичные – R2 – CH – NO2 и третичные – R3 – C – NO2 нитросоединения. Нитросоединения называются по углеводороду с приставкой нитро-:
§ 81. Способы получения
По реакции Коновалова, нитрованием в газовой фазе:
§ 82. Физические свойства
Нитросоединения жирного ряда – жидкости, обладающие приятным запахом, перегоняющиеся без разложения; малорастворимы в воде, ядовиты, не корродируют металлы, их водные растворы имеют нейтральную реакцию. Плотности соединений с числом атомов углерода менее четырех – больше 1, с числом атомов четыре и более – меньше 1.
§ 83. Химические свойства
1. При восстановлении нитросоединений образуются первичные амины:
2. Первичные и вторичные нитросоединения растворимы в щелочах с образованием солей. Это объясняется тем, что водородные атомы при углероде, связанном непосредственно с нитрогруппой под влиянием последней, активируются, и в щелочной среде нитросоединения перегруппировываются в аци-нитро-форму (кислотную):
Таким образом, нитросоединения следует рассматривать как таутомерные вещества, реагирующие в нитро- и аци-нитроформах.
Таутомерия (от греч. tautos – тот же и meras – мера) – явление обратимой изомерии, при которой два или более изомера легко переходят друг в друга. Устанавливается равновесие.
Если щелочные растворы нитросоединений обработать минеральной кислотой, то происходит медленный обратный сдвиг равновесия:
Поэтому нитросоединения относят к псевдокислотам. Для псевдокислот характерно, что сами они нейтральны, не обладают электропроводностью, тем не менее образуют нейтральные соли щелочных металлов.
«Нейтрализация» нитросоединений основаниями (образование нейтральных солей) происходит медленно, а истинных кислот – мгновенно.
3. Активность водородных атомов у углерода, непосредственно связанного с нитрогруппой, проявляется и в ряде других реакций.
Первичные и вторичные нитросоединения реагируют с азотистой кислотой, а третичные – не реагируют:
Щелочные соли нитриловых кислот в растворе имеют красный цвет. Псевдонитрилы в растворах и в расплавах окрашены в синий цвет.
4. Первичные и вторичные нитросоединения конденсируются в присутствии щелочей с альдегидами, образуя нитроспирты:
5. Аци-формы первичных и вторичных нитросоединений в водных растворах при действии минеральных кислот образуют альдегиды или кетоны:
6. Первичные нитросоединения при нагревании с 85%-ной серной кислотой переходят в карбоновые кислоты с отщеплением гидроксиламина. Реакция может служить промышленным методом получения гидроксиламина:
