- •Вопрос 2..
- •Вопрос 3..Все живое происходит только из живого, а всякая организация, присущая живому, возникает только из другой подобной организации.
- •Вопрос 5..
- •6. Структурно-функциональнаяорганизация эукариотической клетки
- •7. Элементраный состав клетки. Неорганические соединения. Значение воды для жизнедеятедльности клетки
- •9. Метаболизм. Пластический обмен. Фотосинтез
- •10. Синтез белков
- •12. Метаболизм на уровне организмов (авто, гетеро, миксотрофы). Аэробное и анаэробное дыхание
- •13. Бесполое размножение
- •14. Митоз и его биологическое значение
- •15. Половое размножение. Гаметогенез.
- •1. Способность популяции к более быстрому изменению.
- •2. Облегчение видообразования.
- •3. Большое генетическое разнообразие в потомстве облегчает адаптацию к непредсказуемым условиям среды.
- •16. Мейоз и его биологическое значение
- •1. Стадии мейоза
- •18. Партеногенез, андрогенез, гипогенез.
- •20. Гистогенез и органогенез
- •1.Нейруляция – образование осевых органов: нервной трубки, хорды. Зародыш на этой стадии называется нейрула.
- •21. Постэмбриональный период. Биогенетический закон Биогенетический закон:
- •14.Постэмбриональный период развития:
- •Прямое развитие
- •Развитие с превращением или метаморфозом (непрямое развитие)
- •22. Наследственность, изменчивость и среда. Генотип и фенотип. Модификационная изменчивость
- •Независимого расхождения хромосом в мейозе;
- •Рекомбинации генов в процессе перекреста хромосом;
- •Случайного соединения генов при оплодотворении.
- •Днк входит в состав:
- •Локализация днк в клетке:
- •1) Сумма нуклеотидов, содержащих пуриновые азотистые основания, равна сумме пиримидиновых азотистых оснований, т.Е.:
- •3) Для каждой молекулы и совокупности молекул в клетке организма определенного вида специфично соотношение
- •Коэффициент видовой специфичности.
- •24. Мутации. Причины мутаций. Значение мутаций для оргпнизма и для эволюции вида
- •1) Физические (ионизирующие излучения, ультрафиолетовое излучение, высокие и низкие температуры);
- •2) Химические (пестициды, нитраты, нитриты, алкоголь, бензапирен, диоксины, ряд антибиотиков, некоторые пищевые добавки, тяжелые металлы);
- •3) Биологические (токсины некоторых бактерий, вирус оспы, вирус кори, вирус герпеса).
- •25. Нормальная и патологическая наследственность. Методы изучения наследственности человека.
- •Методы изучения наследственности человека.
- •26. Экология как наука. Абиотические факторы. Адаптация организмов к абиотическим факторам среды.
- •27. Лимитирующий фактор.
- •28. Биотические факторы. Формы биотических отношений.
- •10.Антропогенные факторы (понятие, классификации, примеры).
- •29. Характеристика водной среды обитания
- •30. Экосистема и биогеоценоз
- •31. Компоненты экосистемы
- •32. Цепи и сети питания
- •I порядка) II порядка)
- •Свойства экосистем.
- •35. Ч. Дарвин и его теория эволюции. Движущие силы эволюции. Механизм естественного отбора.
- •36. Современная теория эволюции
- •37. Направление макроэволюции. Биологический процесс, ароморфоз, идиоадаптация, общая дегенерация.
- •38. Доказательства эволюции органического мира.
- •39. Факторы эволюции: изменчивость, миграция, изоляция, популяционные волны, естественный отбор, дрейф генов.
- •Мутационный процесс
- •Генетическая рекомбинация
- •Изоляция
- •Миграции
- •Популяционные волны
- •Результат дрейфа генов ( для малых популяций )
- •Предпосылки ( факторы ) естественного отбора :
- •Борьба за существование Формы естественного отбора Движущий отбор ( Описан ч. Дарвином , современное учение развито д. Симпсоном , англ. )
- •40. Вид как биологическая система. Критерий вида. Механизмы видообразования.
- •Генная инженерия
40. Вид как биологическая система. Критерий вида. Механизмы видообразования.
С типологической точки зрения, вид – это совокупность особей, сходных между собой, населяющих определенный ареал, способных скрещиваться между собой, давать плодовитое потомство.
Основы типологической концепции вида были разработаны К. Линнеем. Линнеевский вид – это вид совершенный и неизменный, т.е. не способный эволюционировать; это идеальный вид, которому соответствует понятие «эйдос» (идея). Типологическая концепция вида лежит в основе всей систематики: вид – это основная единица систематики, минимально возможный совершенный таксон.
Принадлежность особей к тому или иному виду определяется на основании ряда критериев. Критерии вида – это разнообразные таксономические признаки, которые характерны для одного вида, но отсутствуют у других видов. Различают:
морфологический,
географический,
физиологический,
генетический,
биохимический критерий,
экологический.
По географическому критерию различают:
Виды-космополиты, встречающиеся практически во всех биогеографических областях Земли. Чаще всего это синантропные виды (подорожник большой, пастушья сумка, комнатная муха, серая крыса).
Широкоареальные виды, населяющие территории целых биогеографических царств, областей, провинций. Например, циркумбореальным ареалом характеризуются волки, лисы, медведи.
Узкоареальные виды-эндемики, ограниченные в своем распространении небольшой географической областью.
(например, секвойя в Калифорнии, утконос в Австралии и Тасмании).
По экологическому критерию различают:
Эврибионтные виды с широким экологическим спектром, населяющие различные местообитания (сосна). Характеризуются сплошным ареалом и более или менее равномерным распределением плотности популяций.
Стенобионтные виды с узким экологическим спектром, населяющие строго определенные местообитания; это узкоспециализированные виды, симбионты и паразиты.
Основной критерий вида заключается в его генетическом единстве. Единство вида как динамической системы в эволюции основано на возможности нивелировок различий, возникающих в популяциях путем скрещивания. Как бы ни были изолированы отдельные популяции и подвиды, поток генетической информации между ними всегда существует. Даже единичные миграции отдельных особей из одной популяции в другую, из зоны обитания одного подвида в зону обитания другого, повторяясь на протяжении сотен и тысяч поколений, создают поток генов. Это обеспечивает интеграцию относительно изолированных генофондов отдельных популяций. Конечно, при отсутствии обмена гамет (у агамных, облигатно-партеногенетических и самооплодотворяющихся форм) не возникает такого генетического единства особей, что создает объективные трудности при разграничении видов.
Единство вида не нарушается даже и в том случае, если иногда по каким-то причинам границы между соседними видами оказываются нечеткими. Единство и эволюционная «судьба» вида определяют его специфическое место в биогеоценозах. В природе нет двух видов с одинаковым набором адаптаций: это разнообразие адаптаций делает каждый вид уникальным и определяет возможность формирования каждым видом своей экологической ниши как суммы экологических ниш отдельных, составляющих вид популяций.
Видообразование – это качественный этап эволюционного процесса. Это означает, что образованием видов завершается микроэволюция и начинается макроэволюция. Микроэволюцию можно рассматривать как эволюцию популяций – открытых генетических систем, способных обмениваться генетическим материалом, а макроэволюцию – как эволюцию совершенных таксонов – закрытых генетических систем, которые не способны обмениваться генами в естественных условиях. Вид занимает промежуточное положение между открытыми и закрытыми генетическими системами, поэтому биологический вид можно рассматривать как устойчивую генетическую систему, эволюционирующую относительно независимо от других подобных систем. В то же время биологический вид представляет собой основную единицу сообщества, поскольку именно виду соответствует собственная экологическая ниша.
Видообразование – это сложный, не изученный до конца процесс. Известно множество механизмов образования новых видов. Но в любом случае новый вид должен отличаться от материнского или сестринского вида хотя бы некоторыми наследуемыми признаками и, следовательно, хоты бы некоторыми аллелями. Таким образом, в ходе видообразования исходный набор аллелей должен быть замещен новым набором аллелей.
Согласно общепринятой точке зрения, в основе видообразования лежит принцип дивергенции. В результате дивергенции увеличивается число видов. Дивергенция (от лат. divergo – отклоняюсь, отхожу) – это расхождение признаков организмов в ходе эволюции разных групп (филетических линий), возникших от одного предка. Дивергенцией называют также разделение в процессе эволюции единого таксона на два или несколько. Термин «дивергенция признаков» введён Ч. Дарвином (1859). В больших стационарных популяциях (мегапопуляциях) видообразование затруднено. Это связано с тем, что при большой и постоянной численности популяций элементарные эволюционные факторы практически не действуют.
Таким образом, для начала видообразования исходная большая популяция (мегапопуляция) должна быть разделена на множество малочисленных изолированных популяций (дробление крупных популяций на множество мелких, или островных популяций называется инсуляризацией). Такая изоляция является первичной и носит случайный характер.
Существует несколько типов первичной изоляции, которым соответствуют разные формы видообразования:
Пространственная, или географическая – формируются изолирующие барьеры в виде горных цепей, водных преград, перешейков, ледников, пустынь и т.д. Этот тип изоляции является универсальным для всех видов.
Экологическая – формируются изолирующие барьеры в виде разрывов между экологическими нишами. Этот тип изоляции характерен для паразитических, узкоспециализированных и малоподвижных видов.
Генетическая – формируются изолирующие барьеры в виде хромосомных и геномных мутаций. Этот тип изоляции характерен для растений (при полиплоидизации) и некоторых животных (при хромосомных перестройках и анеуплоидизации). Генетическая изоляция приводит к генетическому, или парапатрическому видообразованию (пара – около, патриа – родина)
41. Формы отбора (движущий, стабилизирующий, дизруптивный)
Движущий отбор – является исходной формой отбора.
Проявляется в виде устойчивого и, в известной мере, направленного изменения частоты аллеля (генотипа, фенотипа) в популяции. Конечным результатом движущей формы отбора является полное замещение аллеля (генотипа, фенотипа) другим аллелем (генотипом, фенотипом). Таким образом, движущий отбор приводит к изменению генетической и фенотипической структуры популяции.
В ходе движущего отбора повышается средняя приспособленность популяции (но не обязательно всех ее членов!).
Механизм движущего отбора заключается в накоплении и усилении отклонений от первоначального (нормального) варианта признака. Эти отклонения появляются в ходе действия элементарных эволюционных факторов. В дальнейшем первоначальный вариант признака может стать отклонением от нормы.
Движущий отбор приводит к появлению в популяции транзитивного, или переходного полиморфизма. Полиморфизм – это одновременное сосуществование в популяции двух и более аллелей одного гена, двух и более генотипов или фенотипов. Выявить этот тип полиморфизма трудно, поскольку он существует в популяции в течение немногих (нескольких десятков) поколений.
Для того, чтобы узнать, сколько поколений требуется для изменения частоты рецессивного аллеля, можно воспользоваться формулой:
t =1/q2 – 1/q1Например, аллель альбинизма встречается в популяции с частотой q1 = 0,007, и желательно снизить эту частоту до q2 = 0,005 . Тогда
t =1/0,005- 1/0,007 =200 – 143 = 57 (поколений)
2. Стабилизирующий отбор (центростремительной отбор) – суммарный результат действия двух и более направлений движущего отбора в пользу одного гено/фенотипа или группы генотипов со сходным фенотипом. Стабилизирующий отбор направлен на сохранение генетической и фенотипической структуры популяции.
Стабилизирующий отбор проявляется в виде сохранения частот аллелей (генотипов, фенотипов) в популяции. Результатом стабилизирующего отбора является сохранение такого состояния популяции, при котором ее средняя приспособленность максимальна.
Различают две формы стабилизирующего отбора: очищающий отбор и отбор на разнообразие.
При очищающем отборе сохраняется первоначальный (нормальный) вариант признака. Отклонения от нормального варианта признака снижают приспособленность особей и удаляются (элиминируются) из популяции. В этом случае частота одного из аллелей стремится к 1, а частоты других аллелей данного гена – к нулю.
При отборе на разнообразие отбор часто действует в пользу гетерозигот (превосходство гетерозигот над гомозиготами называется сверхдоминированием). Тогда в популяции длительное время сохраняется два и более аллеля одного гена в постоянном соотношении. Стабилизирующий отбор на разнообразие приводит к появлению и сохранению в популяции сбалансированного (устойчивого) полиморфизма. Этот тип полиморфизма сохраняется в популяциях неопределенно долгое время.
Мощный стабилизирующий отбор способствует сохранению таксонов. Известны многочисленные персистентные формы – "живые ископаемые" (плеченогие, мечехвосты, гаттерия, латимерия, гинкго). У мечехвостов внутрипопуляционный полиморфизм не меньше, чем у молодых видов членистоногих, однако любое отклонение от среднего значения признака (от адаптивной нормы) приводит к снижению приспособленности.
Теорию стабилизирующего отбора разработал Иван Иванович Шмальгаузен.
К стабилизирующему отбору часто относят и канализирующий отбор – отбор на устойчивость развития, на автономизацию онтогенеза (этот вопрос подробнее будет рассмотрен на соответствующей лекции).
3. Дизруптивный отбор (центробежный отбор) – суммарный результат действия двух и более направлений движущего отбора в пользу двух и более равноприспособленных гено/фенотипов или групп генотипов со сходными фенотипами.
Дизруптивный отбор приводит к появлению в популяции несбалансированного (неустойчивого) полиморфизма. Для длительного сохранения в популяции этого типа полиморфизма необходимо выполнение ряда условий:
а) все формы должны быть действительно равноприспособлены: w (AA) = w (Aa) = w (aa);
б) обе формы должны не скрещиваться между собой: k (aa × AA) → 0;
в) среда обитания должна быть неоднородной в пространстве и/или во времени.
Выполнение даже одного из условий встречается довольно редко, поэтому несбалансированный полиморфизм в пределах популяции – редкое явление. Наиболее часто встречается сезонный полиморфизм у насекомых (бабочки, божьи коровки), экологически обусловленный полиморфизм в больших популяциях растений, полиморфизм при нулевой приспособленности гетерозигот (тропические бабочки).
Теорию дизруптивного отбора разработал Дж. Симпсон.
42. Современная филогения живых организмов.
Филогенезом называют историческое развитие органического мира в целом, а также отдельных систематических групп организмов (таксонов). Филогенез и его закономерности изучает отдельная биологическая наука - филогенетика.
Основополагающими принципами филогенетики являются: 1) дивергентный характер эволюционного процесса - расхождение признаков организмов разных филетических линий, возникших от общего предка; 2) монофилия - таксон любого ранга, происходит от единственного родоначального вида на основе дивергенции или адаптивной радиации, вследствие чего ряд групп организмов могут иметь одного общего предка.
Согласно современным представлениям, дивергенция - это результат развития групп организмов в различных условиях, в процессе которого они приобретают различные черты и удаляются друг от друга по степени сходства. Дивергенции способствует дизруптивный отбор, а также изоляция.
Ход и результат филогенеза изображаются графически в виде родословного дерева (дендрограммы). Построение родословного дерева возможно лишь на основе признания монофилии как основного принципа эволюции органического мира. Схема родословного дерева выполнена впервые в 1866 году Э. Геккелем на примере животных. При его построении Э. Геккель разместил: в нижней части ствола - примитивные группы; в центральной части ствола - группы, эволюционировавшие в основном направлении; по бокам - группы, уклонившиеся от основного направления эволюции с приобретением той или иной специализации; в верхней части - группы, достигшие наиболее высокого уровня организации. При этом таксономическая близость разных групп нашла отражение в степени расхождения (удаления друг от друга) соответствующих ветвей, а толщина ветвей пропорциональна количеству подчинённых таксонов. Иногда родословное дерево «накладывают» на геохронологическую шкалу. Такое родословное дерево иллюстрирует время обособления, расцвета и вымирания разных филогенетических ветвей.
Исследования филогенеза и реконструкции его этапов необходимы для построенияестественной системы организмов. Э.Геккель предложил использовать для этих целей метод тройного параллелизма, сущность которого заключается в сопоставлении данных палеонтологии, сравнительной анатомии и эмбриологии. В современной филогенетике всё шире используются данные генетики, биохимии, молекулярной биологии, этологии, физиологии, паразитологии и других биологических наук.
Конечной целью филогенетических исследований является создание филогенетической или естественной системы организмов. Система - это классификация (распределение) организмов по группировкам различного ранга - таксонам. Она создаёт возможность для биологов различных профилей и специализаций ориентироваться во множестве существующих видов организмов. Попытки классификации организмов известны с древности (Аристотель, Теофраст и др.), однако основы систематики как науки заложены в период с 1686 по 1704 гг. в работах английского натуралиста Дж. Рея (1628-1705), затем (с 1735 года) в известных трудах шведского естествоиспытателя К. Линнея (1707-1778). Первые системы (системы Дж. Рея, К. Линнея и др.) были искусственными: объединения видов в группы основывались на нескольких сугубо внешних признаках. Затем возникли классические системы, которые базировались на учёте морфологических признаков и в значительно меньшей степени эмбриологических и палеонтологических данных.
Главной задачей современной систематики является создание естественной (филогенетической) системы, которая отражала бы реально существующие родственные (генеалогические) отношения между группами живых организмов.Разработка такой системы должна осуществляться на основе комплексного использования морфологических, физиологических, эмбриологических, биохимических, генетических, экологических, палеонтологических и других методов исследования.
Понимаемая большинством современных биологов система живой природы представляет собой усовершенствованный и, по сути, компромиссный вариант классических систем XIX века. Не удивительно, что она постоянно обсуждается, уточняется и изменяется. Наиболее крупные систематические группы этой системы представлены ниже.
Империя |
Надцарство |
Царство |
Подцарство |
1. Неклеточные организмы (вирусы, фаги) |
|
|
|
2. Клеточные организмы |
1. Доядерные организмы, или прокариоты(Procaryota) |
1. Архебактерии(Archaebacteria). 2. Бактерии(Bacteria) |
|
|
2. Ядерные организмы,или эукариоты(Eucaryota) |
1. Растения(Plantae, Vegetabilia) |
1. Багрянки (Rhodobiontia). 2. Настоящие водоросли (Phycobiontia). 3. Высшие растения (Embryobiontia) |
|
|
2. Грибы (Fungi, Mycota) |
|
|
|
3. Животные(Animalia) |
1. Простейшие (Protozoa). 2. Многоклеточные (Metazoa) |
Принципиально важным для формирования системы живых организмов было установление в середине ХХ века факта резкого отличия бактерий, цианобактерий (синезелёных водорослей) и недавно открытых архебактерий от всех остальных живых существ. У них нет истинного ядра, а генетический материал в виде кольцевой молекулы ДНК лежит свободно в так называемой нуклеоплазме, не образуя настоящих хромосом. Бактерии и архебактерии отличаются также отсутствием митотического веретена, микротрубочек и нетипичным строением жгутиков. Эти организмы получили название прокариот, или доядерных организмов.Ключевыми событиями в истории развития жизни считают переход к эукариотическому типу клеточной организации, появление многоклеточности, возникновение человека.
43. Подразделения и границы биосферы.
Подразделения и границы биосферы
Биосфера естественно расчленена на меробиосферы:
1.Аэробиосфера(населенная аэробионтами)
2.Гидробиосферу( с гидробионтами)
3.Геобиосферу( ее населяют геобионты).
Неравномерность биосферы по горизонтали (сгущения и пленки жизни).
Всего выделяют 4 пленки жизни:
· В океане- планктонная и донная(бентосная)
· На суше-наземная и почвенная.
Сгущение жизни на суше:
В.И. Вернадский выделил 2типа:
1.Береговые
2. Пойменные.
Недавно выделены еще 2 поперечные полосы сгущения жизни.
Одна- у подножья гор-
3.Предгорная, орошаемая богатым стоком со склонов.
Другая- в субальпийском поясе гор –
4. Зона горных лугов.
Там выпадает максимум осадков, берут начало многие реки, развито горное земледелие и скотоводство и находятся некоторые центры происхождения культурных растений.
Учитывая современные данные по определению биомассы различных экосистем можно выделить еще одно сгущение жизни-
5.Влажные дождевые леса тропиков и отчасти субтропиков
Их фитомасса достигает рекордной величины 650т\га (в тайге 200-250 т\га), а суммарная фитомасса тропических субтропических лесов составляет около 60% всего живого вещества нашей планеты.
Сгущение жизни в океане:
В.И. Вернадский выделил 3типа :
1. Прибротные
2.Саргассовые
3.Рифовые
Позже были установлены еще 2 типа-
4. Анвелинговые
5. Аббисальные рифтовые.
Таким образом, биосфера Вернадского – это глобальная экосистема, в которой связи м\у газовой, жидкой и твердой оболочками регулируются живым веществом и ее основные свойства – результат их деятельности.
Поэтому жизнь – это планетарная константа Земли, теснейшим образом связанная со строением и функционированием этих оболочек.
«Жизнь не является внешним случайным явлением на земной поверхности, - говорил Вернадский…
Никогда в течение всего геологического времени не наблюдались азойные (т. е. лишенные жизни) геологические эпохи».
44. Генная инженерия. Фермент и векторы.
