- •Срс 1. Виды методов неразрушающего контроля.
- •5) Оптические методы
- •6) Радиационные методы
- •7) Тепловые методы
- •8)Радиоволновые методы
- •Приборы радиоволнового контроля
- •Методы радиоволнового контроля
- •Электрический неразрушающий контроль позволяет решить следующие практические задачи:
- •Срс 2. Магнитный метод контроля.
- •Срс 3. Методы неразрушающего контроля качества для дефектоскопии и толщинометрии строительных конструкций
- •Срс 4. Приборы для дефектоскопии и толщинометрии Миниатюрный ультразвуковой дефектоскоп а1211 Mini
- •Назначение
- •Особенности
- •Характеристики
- •Базовый комплект
- •Ультразвуковой толщиномер утм-мг4
- •Технические характеристики ультразвуковых толщиномеров
- •Срс 5. Система автоматизированного мониторинга.
6) Радиационные методы
Основаны на взаимодействии проникающих излучений с контролируемым объектом. Их применяют для контроля качества сварных и паяных швов, литья, качества сборочных работ, состояния закрытых полостей агрегатов и т. д. Проникающие излучения (рентгеновское, потока нейтронов, γ- и β-лучей), проходя через толщу материала детали и взаимодействуя с его атомами, несут различную информацию о внутреннем строении вещества и наличии скрытых дефектов внутри контролируемых объектов.
Наиболее распространенными радиационными методами являются рентгенография, рентгеноскопия и гамма-контроль, которые нашли применение на предприятиях металлургии и машиностроения. В качестве источников проникающих излучений применяют рентгеновские аппараты, бетатроны, линейные ускорители и микротроны, гамма-дефектоскопы и др.
Широкое распространение для исследования материала сварных соединений получили рентгеновское и Y-излучение. Большие толщины контролируют тормозным излучением, получаемым на высокоэнергетических установках.
Реже используют Y-моноэнергетическое, т. е. однородное ионизирующее излучение, и радиоизотопное Y-излучение, а также излучение потоками нейтронов или протонов.
Рентгеновское излучение — это квантовое (фотонное) излучение с длинами в 1013—109 м и энергией квантов от 1,6*1016 до 1,6*1013 Дж.
Рентгеновское излучение состоит из тормозного и характеристического. Тормозное — это фотонное излучение с непрерывным энергетическим спектром, возникающее при изменении кинетической энергии заряженных частиц.
Кроме тормозного рентгеновского излучения с непрерывным спектром, при некоторой определенной для данного материала анода энергии электронов возникает характеристическое рентгеновское излучение с дискретным спектром.
Источники ионизирующего электромагнитного излучения
При радиационнодефектоскопическом контроле качества сварных соединений применяют источники излучения следующих трех основных типов: рентгеновские аппараты, гаммадефектоскопы, заряженные радиоизотопными источниками излучения, а также ускорители электронов (бетатроны, линейные ускорители и микротроны). Выпускаемые отечественной промышленностью источники фотонного излучения для неразрушающего контроля охватывают диапазон энергий примерно 10 кэВ — 35 МэВ.
Рентгеновские аппараты.
Рентгеновские аппараты — наиболее распространенные источники фотонов в диапазоне энергий от единиц до сотен килоэлектронвольт. Рентгеновское излучение в рентгеновском аппарате образуется в вакуумном приборе, называемом рентгеновской трубкой. В рентгеновской трубке помещается подогревной катод, нить накала которого служит источником термоэлектронов, и массивный анод. При приложении к катоду и аноду разности потенциалов электроны, эмиттируемые катодом, ускоряются и бомбардируют анод. При торможении электронов в материале анода образуется тормозное и характеристическое рентгеновское излучение, которым просвечивают контролируемые объекты. Участок поверхности мишени, на котором преимущественно тормозится пучок электронов, называется действительным фокусным пятном рентгеновской трубки. Проекция фокусного пятна в направлении оси рабочего пучка на плоскость, перпендикулярную этой оси, называется эффективным фокусным пятном рентгеновской трубки. Для питания рентгеновской трубки в рентгеновском аппарате служит высоковольтный генератор, обеспечивающий накал катода и высокое напряжение.
Управление током и напряжением на рентгеновской трубке и контроль за работой аппарата осуществляют с пульта управления. С целью защиты обслуживающего персонала от неиспользуемого рентгеновского излучения и высокого напряжения рентгеновские трубки помещают в специальные, как правило, освинцованные защитные кожухи.
Гаммадефектоскопы.
Значительный объем контроля сварных и паяных соединений осуществляется с помощью гаммадефектоскопов (С. В. Румянцев, А. Н. Майоров, В. Г. Фирстов и др.). Гаммадефектоскопы заряжают радиоизотопными источниками. Основные, важные для дефектоскопии характеристики радиоизотопных источников — энергетический спектр излучения, выход излучения, период полураспада и геометрические размеры источников.
Энергетический спектр гаммаизлучения имеет характер дискретных линий, как правило, в широком диапазоне энергий и с различной относительной интенсивностью. В зависимости от энергии уфотонов радиоизотопные источники излучения делят на три группы: источники с жестким •уизлучением (энергия фотонов около 1 МэВ и более), источники с уизлучением средней энергии (примерно 0,3—0,7 МэВ) и низкоэнергетические источники уизлучения (энергия менее 0,3 МэВ).В настоящее время для гаммадефектоскопического контроля используют радиоизотопные источники на основе следующих изотопов в порядке возрастания энергии: 170Tm, 192Ir, 137Cs, 60Co. Этими радиоизотопными источниками заряжают гаммадефектоскопы различного назначения.
Линейные ускорители и микротроны
В качестве источников высокоэнергетического фотонного излучения в радиационных методах неразрушающего контроля используют ускорители электронов , сообщающие им кинетическую энергию в диапазоне 1100 МэВ: линейные ускорители , микротроны и бетатроны.
Радиография — метод получения на детекторах видимого изображения внутренней структуры сварного соединения, просвечиваемого ионизирующим излучением.
В основе радиационных методов обнаружения дефектов лежат законы ослабления ионизирующих излучений веществом и способы регистрации интенсивности излучения за просвечиваемым объектом. В качестве регистраторов излучения в радиографическом методе неразрушающего контроля используют рентгеновские пленки. При просвечивании контролируемых объектов на рентгеновскую пленку расположение, форма и размеры внутренних дефектов определяются по фотографическому изображению теневой проекции изделия — рентгеновскому снимку.
В радиографии используют свойство рентгеновских пленок чернеть после соответствующей фотообработки под действием ионизирующих излучений.
