- •Понятие первообразной. Основные свойства (лемма, теорема)
- •Понятие неопределенного интеграла.
- •Методы замены переменной
- •Непосредственное интегрирование.
- •Метод подстановки или метод замены переменных.
- •Метод интегрирования по частям.
- •Основные типы интегралов берущихся по частям.
- •Теорема о представлении рациональной функции в виде суммы элементарных дробей с неопределенными коэффициентами.
- •Метод неопределенных коэффициентов.
- •Основные типы интегралов от рациональных функций.
- •Понятие интегральной суммы. Геометрический смысл.
- •Понятие определенного интеграла.
- •Основные свойства определенного интеграла.
- •Интеграл с переменным верхним пределом.
- •Формула Ньютона-Лейбница.
- •Замена переменных в определенном интеграле.
- •Формула интегрирования по частям в определенном интеграле.
- •Приближенное вычисление определенного интеграла.
- •Несобственные интегралы с бесконечными пределами.
- •Несобственные интегралы от неограниченных функций.
- •Метрические, линейные, нормированные, евклидовы пространства.
- •Понятие функции n переменный. Предел функции n переменных.
- •Непрерывность функции n переменных.
- •Непрерывность сложной функции.
- •Частные производные функции n переменных.
- •Дифференцируемость функции n переменных.
- •Дифференциал функции n переменных.
- •Дифференцирование сложной функции.
- •Производная по направлению. Градиент.
- •Частные производные высших порядков функции n переменных.
- •Дифференциал второго порядка функции n переменных.
- •Квадратичная форма. Критерий Сильвестра.
- •Локальный экстремум функции n переменных. Необходимое условие локального экстремума.
- •Необходимое условие локального экстремума
- •Достаточные условия локального экстремума функции n переменных.
- •Неявные функции.
- •Условный экстремум
- •Метод множителей Лагранжа.
- •Определение числового ряда, частичной суммы, сходящегося ряда.
- •Свойства сходящихся числовых рядов.
- •Необходимое условие сходимости числового ряда. Сходимость гармонического ряда.
- •Необходимое и достаточное условие сходимости ряда с неотрицательными членами.
- •Признак сравнения.
- •П ризнак Даламбера.
- •Знакочередующийся ряд. Признак Лейбница.
- •Знакопеременные ряды, их сходимость.
- •Степенные ряды.
- •Теорема Абеля.
- •Теорема об интервале сходимости степенного ряда.
- •Теорема о радиусе сходимости степенного ряда
- •49, Определние и услвия сущ-ния двойных интегралов.Геом смысл.Св-ва.
- •50.Свойства .
- •52. Теорема о переходе от к повторному для криволинейной обл-ти.
- •Диффер ур-ния 1-го порядка.Решение ур-ния.Теорема Коши и ее геом смысл.
- •Линейные ур-ния.Метод вариации.
- •Понятие первообразной. Основные свойства (лемма, теорема)
- •Понятие неопределенного интеграла.
Знакочередующийся ряд. Признак Лейбница.
Знакочередующийся ряд можно записать в виде a1-a2+a3-a4+…+(-1)n+1an+…, (1) где an>0. Признак сходимости Лейбница: теорема: Если абсолютные величины членов знакочередующегося ряда (1) монотонно убывают: a1>a2>a3>…и общий член ряда стремится к нулю: lim an = 0, то ряд сходится.
n
Док-во: Пусть дан ряд (1) и пусть an>an+1 и a0 при n. Рассмотрим частичную сумму ряда с чётным числом членов S2n=a1-a2+a3-a4+…+a2n-1-a2n=(a1-a2)+(a3-a4)+…+(a2n-1-a2n). Все разности в скобках в силу первого условия положительны, поэтому последовательность частичных сумм {S2n}является возрастающей. Докажем, что она ограничена. Для этого представим S2n в виде
S2n=a1-[(a2-a3)+(a4-a5)+…+(a2n-2-a2n-1)+a2n]. Отсюда следует, что S2n<a1 для любого n, т.е. {S2n} ограничена. Итак, последовательность {S2n} возрастающая и ограниченна, следовательно, она имеет предел lim S2n=S.
n
Покажем теперь, что и последовательность частичных сумм нечётного числа членов сходится у тому же пределу S. Действительно, S2n+1=S2n+a2n+1. Переходя в этом равенстве к пределу при n и используя второе условие (an0 при n) , получаем:
lim S2n+1 = lim (S2n + a2n+1) = lim S2n + lim a2 +1 = S + 0 = S.
n n n n
Таким образом, последовательность частичных сумм ряда (1) сходится к пределу S. Это и означает, что ряд (1) сходится.
Знакопеременные ряды, их сходимость.
Знакопеременный ряд: a1 + a2 +a3+…+an+…= an (1), где числа а1…могут быть как
n=1
положительными, так и отрицательными, причём расположение положительных и отрицательных членов в ряде произвольно. Одновременно рассматривается ряд, составленный из абсолютных величин членов ряда (1):
а1+а2+а3+…+аn+…=аn (2).Такой признак сходимости – теорема:
Если ряд (2) сходится, то сходится и ряд (1).
Док-во: пусть ряд (2) сходится. Обозначим через Sn частичную сумму ряда (1), а через n частичную сумму ряда (2): Sn= a1 + a2 +a3+…+an; n =а1+а2+а3+…+аn.Так как ряд (2) сходится, то последовательность его частичных сумм {n} имеет предел lim n=, при этом для любого n имеет место неравенство n (3), поскольку члены ряда (2) неотрицательны.
Обозначим через S’n сумму положительных членов, а через S’’n сумму модулей отрицательных членов, содержащихся в сумме Sn . Тогда: Sn = S’n - S’’n(4), n = S’n + S’’n (5). Очевидно, последовательности { S’n } и { S’’n } не убывают, а из равенства (5) и неравенства (3) следует, что они являются ограниченными: S’n n и S’’n n . Следовательно, существуют lim S’n = S’ и lim S’’n = S’’. Но в таком случае, в
n n
силу равенства (4), последовательность частичных сумм ряда (1) имеет предел :
lim Sn = lim ( S’n - S’’n)= lim S’n - lim S’’n = S’n – S’’n.
n n n n
Это означает, что ряд (1) сходится.
Степенные ряды.
Ряд вида a0 + a1x +a2x2 +a3x3+…+anxn+…=anxn (1) называется степенным рядом.
n=0
Числа a0, a1, a2,…,an,… называются коэффициентами степенного ряда.
Придавая х различные числовые значения , будем получать различные числовые ряды, которые могут оказаться сходящимися или расходящимися. Множество тех значений х , при которых ряд (1) сходится, называется областью его сходимости. Это множество всегда не пусто, т.к. любой степенной ряд сходится при х=0. Очевидно, что частичная сумма Sn (х)= a0 + a1x +…+anxn является функцией переменной х. Поэтому и сумма ряда S также является некоторой функцией переменной х, определённой в области
сходимости ряда:
S=S(x)= anxn (или f(x)= anxn).
n=0 n=0
