- •Понятие первообразной. Основные свойства (лемма, теорема)
- •Понятие неопределенного интеграла.
- •Методы замены переменной
- •Непосредственное интегрирование.
- •Метод подстановки или метод замены переменных.
- •Метод интегрирования по частям.
- •Основные типы интегралов берущихся по частям.
- •Теорема о представлении рациональной функции в виде суммы элементарных дробей с неопределенными коэффициентами.
- •Метод неопределенных коэффициентов.
- •Основные типы интегралов от рациональных функций.
- •Понятие интегральной суммы. Геометрический смысл.
- •Понятие определенного интеграла.
- •Основные свойства определенного интеграла.
- •Интеграл с переменным верхним пределом.
- •Формула Ньютона-Лейбница.
- •Замена переменных в определенном интеграле.
- •Формула интегрирования по частям в определенном интеграле.
- •Приближенное вычисление определенного интеграла.
- •Несобственные интегралы с бесконечными пределами.
- •Несобственные интегралы от неограниченных функций.
- •Метрические, линейные, нормированные, евклидовы пространства.
- •Понятие функции n переменный. Предел функции n переменных.
- •Непрерывность функции n переменных.
- •Непрерывность сложной функции.
- •Частные производные функции n переменных.
- •Дифференцируемость функции n переменных.
- •Дифференциал функции n переменных.
- •Дифференцирование сложной функции.
- •Производная по направлению. Градиент.
- •Частные производные высших порядков функции n переменных.
- •Дифференциал второго порядка функции n переменных.
- •Квадратичная форма. Критерий Сильвестра.
- •Локальный экстремум функции n переменных. Необходимое условие локального экстремума.
- •Необходимое условие локального экстремума
- •Достаточные условия локального экстремума функции n переменных.
- •Неявные функции.
- •Условный экстремум
- •Метод множителей Лагранжа.
- •Определение числового ряда, частичной суммы, сходящегося ряда.
- •Свойства сходящихся числовых рядов.
- •Необходимое условие сходимости числового ряда. Сходимость гармонического ряда.
- •Необходимое и достаточное условие сходимости ряда с неотрицательными членами.
- •Признак сравнения.
- •П ризнак Даламбера.
- •Знакочередующийся ряд. Признак Лейбница.
- •Знакопеременные ряды, их сходимость.
- •Степенные ряды.
- •Теорема Абеля.
- •Теорема об интервале сходимости степенного ряда.
- •Теорема о радиусе сходимости степенного ряда
- •49, Определние и услвия сущ-ния двойных интегралов.Геом смысл.Св-ва.
- •50.Свойства .
- •52. Теорема о переходе от к повторному для криволинейной обл-ти.
- •Диффер ур-ния 1-го порядка.Решение ур-ния.Теорема Коши и ее геом смысл.
- •Линейные ур-ния.Метод вариации.
- •Понятие первообразной. Основные свойства (лемма, теорема)
- •Понятие неопределенного интеграла.
Локальный экстремум функции n переменных. Необходимое условие локального экстремума.
DEF будем говорить, что функция u=f(M) Df=f{M}сЕ n имеет в точке Мо локальный максимум (минимум) если существует такая - окрестность этой точки в пределах которой значение функции f(Mo) является наибольшим (наименьшим) по сравнению со значениями функции в любой другой точке этой окрестности.
Необходимое условие локального экстремума
Если
функция u=f(x1,x2…xn)
имеет в точке Mo(
частные
производные первого порядка по всем
переменным Х1,Х2,Х3…Хn
и имеет в т Мо локальный экстремум, то
все частные проиводные первого порядка
в точке Мо обращаются в 0.
Все точки в который частные производные обращаются в 0, в которых все необъодимые условия экстремума выполнены, называются стационарными точками.
Замечание:
необходимое условие экстремума может
быть записано так: Если функция u=f(m)
дифференцируема в точке Мо и имеет в
этой точке локальный экстремум, то
дифференциал функции du(Mo)=0(тождественное
равенство), т.е.
Достаточные условия локального экстремума функции n переменных.
Пусть функция u=f(M) один раз дифференцируема в некоторой окрестности точки Мо и два раза дифференцируема в самой точке Мо, пусть кроме того Мо – стационарная точка. Тогда:
Если d2u в точке Мо положительно определенная квадратичная форма относительно переменных dx1,dx2,…,dxn, то Мо – точка локального минимума
Если d2u в точке Мо отрицательно определенная квадратичная форма, то Мо – точка локального Максимума.
Если d2u в точке Мо знакопеременная квадратичная форма, то экстремум в точке Мо не существует.
Частный случай:
[Т] пусть функция u=f(x,y) один раз дифференцируема в окрестности точки Мо с координатами (хо,уо) и два раза дифференцируема в самой точке Мо и пусть Мо – стационарная точка, тогда если в точке Мо выполнено условие:
,
то функция имеет в точке Мо локальный
экстремум, причем если
в
точке Мо>0 , то Мо точка локального
минимума.
Если (Мо)<0 то Мо точка локального Max
Если
же
то
экстремум в точке Мо не существует.
Неявные функции.
Def Если переменная u, являющаяся по смыслу функцией переменных х1,х2,…,хn задается посредством функций уравнений F(U,X1,x2,…,xn)=0, то говорят, что функция задана неявно.
Частные производные неявно заданной функции вычисляются по формулам:
Рассмотрим совокупность М неявных функций, которые задаются посредством системы М функциональных уравнений:
(1)
Пусть функции определены, как решение М функциональных уравнений (2)
(2)
Решением системы (2) будет называться совокупность функций, таких что при их подстановки в систему все уравнения этой системы образуются в тождества.
Def Это решение будем называть непрерывным и дифференцируемом в некоторой области D изменения переменных Х1,Х2,…Хn Если каждая из функций U1,U2,…Um непрерывна и дифференцируема в этой области.
=
Такой определитель называют определителем Якоби или Якобианом.
[T]
Система (2) будет разрешима, а решение
непрерывно и дифференцируемо, если
функция f1,f2,…,fn
дифференцируема в окрестности точки
Мо,
непрерывна
в точке Мо, Якобиан
отличен
от 0 и F1=F2=…=Fn
в точке Мо
