Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторная работа 3.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
23.92 Mб
Скачать

Федеральное агентство по образованию РФ

ГОУ ВПО Ульяновский государственный педагогический

университет им. И.Н.Ульянова

Кафедра общей физики

Методические указания

к лабораторной работе

«Изучение электроизмерительных приборов.

Расширение пределов измерения электроизмерительных приборов»

Ульяновск 2008 г.

Печатается по решению

редакционно-издательского

совета УлГПУ им. И.Н.Ульянова

УДК 1000/07/

Самохина С.С.Методические указания к лабораторной работе «Изучение электроизмерительных приборов. Расширение пределов измерения электроизмерительных приборов».- Ульяновск : УлГПУ им. И.Н.Ульянова, 2008.- 30с.

Методическое пособие содержит краткую теорию по теме лабораторной работы. Включает 3 задания ( расчет шунта к амперметру, добавочного сопротивления к вольтметру, изготовление омметра). Содержит указания к выполнению заданий, краткое описание используемых в работе измерительных устройств, контрольные вопросы, приложение. В приложении описывается принцип действия электроизмерительных приборов различного назначения.

Методическое руководство предназначено для студентов физико-математического факультета.

Составитель – кандидат педагогических наук, доцент С.Самохина

Ответственный за выпуск – кандидат физико-математических наук, доцент Ю.Н.Кудрявцев

Рецензент – ст. преподаватель В.Д. Рябинова

Ульяновский государственный педагогический

университет им. И.Н.Ульянова, 2007.

Изучение электроизмерительных приборов.

Методы расширения пределов измерения электроизмерительных приборов

Цели работы: 1. Ознакомиться с методами расширения пределов электроизмерительных приборов;

2. Рассчитать шунт для амперметра и дополнительное сопротивление для вольтметра, проградуировать приборы.

3. Изготовить омметр и провести измерение сопротивлений с его помощью

Приборы: 1.Гальванометр (миллиамперметр 50-100-200 мА);

2. Амперметр (1-2 ) А; N=……… I max =……….. k= ……………

3. Вольтметр (15-60) В; N=……… U max =……….. k= ……………

4. Реостат (30 Ом);

5. Магазин сопротивлений типа Р-33;

6. Источник напряжения (типа ВС-24);

7. Проволока для изготовления шунта (медь);

8. Масштабная линейка;

9. Микрометр;

10.Соединительные провода

Примечание: Технические характеристики приборов записать в рабочую тетрадь

Введение

Электрические измерения

Средства измерений – это особые технические средства, приводимые во взаимодействие с материальным объектом. Результатом измерений является значение физической величины. Физические величины подразделяют на непрерывные (аналоговые) и дискретные (квантованные). Большинство физических величин являются аналоговыми (напряжение, сила тока, температура, длина и т.д.). Квантованной величиной является, например, электрический заряд.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем.

Существуют следующие основные группы средств для измерения электрических , магнитных и неэлектрических физических величин:

- аналоговые электромеханические и электронные приборы

-цифровые измерительные приборы и аналого-цифровые преобразователи

-измерительные преобразователи электрических и неэлектрических величин в электрические сигналы

-регистрирующие приборы (самопишущие приборы, осциллографы, магнитографы и др.

-измерительные информационные системы и вычислительные комплексы и т.д.

Все приборы делятся на аналоговые измерительные приборы(например, электроизмерительный прибор с отсчетным устройством в виде стрелки, , перемещающейся по шкале с делениями) и цифровые измерительные приборы (показания представляются в цифровой форме). Цифровые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы более точны, более удобны при снятии показаний и, в общем, более универсальны. В них измеряемая величина (например, напряжение) автоматически сравнивается с эталонной величиной, после ряда преобразований результат сравнения выдается на экран в виде светящегося числа. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения сопротивления постоянному току со средней и высокой точностью, а также напряжения и силы переменного тока.

Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые. В цифровых измерительных приборах (кроме простейших) используются электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный, вакуумный люминесцентный или жидкокристаллический индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме.

Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1–0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4–0,002%), но зато время преобразования – от ~10мкс до ~1 мс.

Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.