- •С.П. Серегин,
- •«Биофизика и основы взаимодействия физических полей с биообъектами»
- •Раздел 2. Биофизика сложных систем 238
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография 276
- •Глава 13. Речеобразующая система человека 302
- •Глава 14. Моделирование биофизических процессов 326
- •Предисловие
- •Введение
- •Лекция 1. Общая биофизика. Биофизические процессы, протекающие в организме
- •Механические свойства биологических тканей
- •1.1. Молекулярная структура твердых тел, полимеров и жидких кристаллов
- •1.2. Механические свойства мышц и костного аппарата. Закон Фанга
- •1.3. Механические свойства сосудистой стенки
- •Вопросы для самопроверки
- •Типовые тесты текущего контроля
- •Задачи для закрепления изучаемого материала
- •Лекция 2. Термодинамика биологических сред
- •2.1. Основные термодинамические понятия и величины. Первое начало термодинамики
- •2.1.1. Понятия обратимых и необратимых процессов
- •2.1.2. Внутренняя энергия систем
- •2.2. Понятие теплоемкости. Применение первого начала термодинамики к газовым законам
- •2.2.1. Изохорический процесс
- •2.2.2. Изобарический процесс
- •2.2.3. Изотермический процесс
- •2.2.4. Адиабатический процесс
- •2.3. Применение первого начала термодинамики к биологическим процессам. Физические основы терморегуляции организма
- •2.3.1. Теплопродукция организма
- •2.4. Перенос теплоты в живых организмах. Термометрия
- •2.5. Понятие энтропии. Второе начало термодинамики
- •2.5.1. Круговые процессы
- •2.5.2. Цикл Карно
- •2.5.3. Энтропия
- •2.6. Статистическое содержание второго начала термодинамики
- •2.7. Термодинамические потенциалы
- •2.8. Открытые термодинамические системы. Уравнения Пригожина. Стационарные состояния открытой системы
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Типовые тесты текущего контроля.
- •Лекция 3. Молекулярная биофизика
- •3.1. Белковые молекулы. Структура белка
- •3.2. Нуклеиновые кислоты
- •3.3. Биосинтез белка
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Лекция 4. Физические свойства клеток
- •4.1. Строение и функции клеток и клеточных структур
- •4.2. Органеллы клеток
- •4.3. Строение ядра
- •4.4. Мембрана клетки как сферический конденсатор
- •4.5. Физико-химические методы исследования клеточных мембран
- •4.5.1. Электронная микроскопия
- •4.5.2. Рентгеноструктурный анализ
- •4.5.3. Поляриметрия
- •4.5.4. Электронный парамагнитный резонанс
- •4.5.5. Ядерный магнитный резонанс
- •4.5.6. Физическая характеристика клеточных мембран. Искусственные мембраны
- •4.6. Проницаемость клеточной мембраны
- •4.6.1. Пассивный транспорт веществ
- •4.6.2. Активный транспорт веществ в клетках
- •4.6.3. Опыт Уссинга. Ионные каналы
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Задачи для самопроверки
- •Лекция 5. Электрические явления в клетках и тканях
- •5.1. Виды биопотенциалов. Их природа. Понятие двойного электрического слоя. Дзета-потенциал
- •5.2. Определение поверхности электрического заряда эритроцитов
- •5.3. Мембранные потенциалы. Потенциал покоя и действия. Их регистрация
- •5.4. Регистрация биопотенциалов
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Лекция 6. Специальные методы, используемые для диагностики
- •6.1 Рентгеновские лучи
- •6.2. Взаимодействие рентгеновского излучения с веществами
- •6.3. Рентгеновская компьютерная томография (ркт)
- •6.4. Ангиография
- •6.5. Магнитно-резонансная томография (мрт)
- •6.6. Магнитокардиография
- •6.7. Радионуклидная диагностика
- •6.8. Действие радиации на человека
- •Вопросы для самопроверки
- •Лекция7. Биоакустические процессы
- •7.1. Характеристика звука. Его восприятие. Строение слухового анализатора
- •7.2. Биофизика инфразвука
- •7.3. Получение, распространение и регистрация ультразвука
- •7.4. Звуковое давление и акустическая энергия
- •7.5. Взаимодействие ультразвука с веществом
- •Рассмотрим поглощение ультразвуковых волн.
- •7.6. Ультразвуковые исследования (узи)
- •Вопросы для самопроверки
- •Лекция 8. Фотобиологические процессы. Биофизика зрительного восприятия
- •8.1. Процесс поглощения света
- •8.2. Зрительный аппарат человека
- •8.3. Спектроскопия
- •8.4. Термография
- •8.5. Люминисценция. Миграция энергии
- •Вопросы для самопроверки
- •Лекция 9. Индуцированное излучение. Его взаимодействие с биообъектами
- •9.1. Квантовые генераторы
- •9.2. Влияние лазерного излучения на биообъекты
- •9.3. Терапевтические лазерные приборы
- •Вопросы для самопроверки
- •Раздел 2. Биофизика сложных систем лекция10. Основы гемодинамики и биореологии
- •10.1. Вопросы биореологии
- •10.2. Гемодинамика крови. Уравнение Пуазейля и Бернулли
- •10.2.1. Уравнение Пуазейля
- •10.2.2. Уравнение Бернулли
- •10.3. Физические закономерности движения крови в сосудистой системе. Пульсовая волна
- •10.4. Клинические методы определения вязкости крови
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Лекция 11. Электропроводность биологических тканей. Импеданс
- •11.1. Электропроводность клеток и тканей для постоянного электрического тока. Лекарственный электрофорез
- •11.2. Электропроводность клеток и тканей для переменного электрического тока
- •11.3. Реография
- •11.4. Измерение электропроводности в медицинских и биологических исследованиях
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография
- •12.1. Теория Эйнтховена
- •12.2. Понятие токового диполя. Кардиография
- •12.3. Аппараты для электрографии
- •12.4. Биопотенциалы головного мозга. Электроэнцефалография
- •12.5. Миография и кожно–гальванический потенциал
- •12.6. Электростимуляция. Закон Лапика и Дюбуа-Реймона
- •Вопросы и задачи для самопроверки
- •Глава 13. Речеобразующая система человека
- •13.1. Механизм речеобразования
- •13.2. Акустическая фонетика
- •13.3. Акустическая теория речеобразования
- •13.3.1. Распространение звуков
- •13.3.2. Возбуждение звуков в голосовом тракте
- •13.3.3. Модели сигнала, основанные на акустической теории
- •Вопросы для самопроверки
- •Глава 14. Моделирование биофизических процессов
- •14.1. Виды моделей. Фармакокинетическая модель
- •14.2. Модель кровотока при локальном сужении сосудов
- •14.3 Движение крови по эластичным сосудам. Модель Франко
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Заключение
- •Библиографический список
Лекция 2. Термодинамика биологических сред
Термодинамикой называется наука, которая занимается изучением условий и количественных соотношений превращения энергии из одних видов в другие. Термодинамические законы впервые были выведены французским ученым С. Карно. Изучение тепловых процессов, происходящих в механических системах, в дальнейшем было продолжено в трудах Р. Клаузиуса, Л. Больцмана и других ученых XIX и XX столетий. В последнее время термодинамика все больше проникает в биологию, так как данный метод позволяет произвести энергетический анализ почти всех физиологических процессов, протекающих как на молекулярном уровне, так и в целом организме.
2.1. Основные термодинамические понятия и величины. Первое начало термодинамики
В физике системой называется совокупность рассматриваемых тел. Причем системой может служить жидкость и находящийся в равновесии с ней пар. Система может состоять и из одного тела. В термодинамике различают три вида систем.
1. Изолированная система. Процессы, происходящие в изолированной системе, не реагируют со средой, так как не происходит обмена с окружающей средой ни веществом, ни энергией. Безусловно, такая система идеальна и в природе не существует.
2. Закрытая система. Это система, в которой происходящие процессы могут взаимодействовать с окружающей средой в виде обмена энергиями, но не веществами. Примером закрытой системы является герметически закрытый сосуд, в котором, например, протекает экзотермическая биохимическая реакция. В данном случае система отдает окружающей среде тепло, но веществом с ней не обменивается.
3. Открытая система. Это система, которая обменивается с окружающей средой как энергией, так и веществом. Все живые организмы - открытые системы, так как необходимым условием жизнедеятельности является постоянный обмен веществом и теплом со средой.
В период развития термодинамики все термодинамические законы были выведены для изолированных и закрытых систем. В настоящее время в биофизике разрабатываются и используются термодинамические законы для открытых систем.
2.1.1. Понятия обратимых и необратимых процессов
Все процессы, протекающие в системах, могут являться обратимыми и необратимыми.
Обратимым называется процесс, переводящий систему из одного состояния (1) в другое (2) (рис. 2.1), причем обратный переход из (2) к (1) происходит таким образом, что система проходит через все те же промежуточные состояния, как и при прямом процессе.
Всякий медленно протекающий процесс следует считать обратимым. Обратимые процессы являются некоторой идеализацией. Однако на практике можно подойти достаточно близко к осуществлению обратимых процессов.
Рис. 2.1. Схема перехода системы из состояния 1 в состояние 2
Обычно всякий процесс, переводящий физическую систему из одного состояния в другое, протекает всегда таким образом, что его нельзя повести в обратном направлении так, чтобы система проходила через все те же промежуточные состояния, но только в обратном порядке. Такое свойство процесса называется необратимостью, и все процессы, протекающие во всех видах систем, являются необратимыми.
2.1.2. Внутренняя энергия систем
Системы могут обладать запасом внутренней энергии. Внутренней энергией какого-либо тела называется энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил. Так, например, при определении внутренней энергии некоторой массы газа не должна учитываться энергия движения газа вместе с сосудом и энергия, обусловленная нахождением газа в поле сил земного притяжения. Таким образом, в понятие внутренней энергии включают кинетическую энергию хаотического движения молекул, потенциальную энергию взаимодействия между молекулами и внутримолекулярную энергию.
Внутренняя энергия является функцией состояния системы. Это означает, что каждый раз, когда система оказывается в данном состоянии, ее внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы.
В идеальном газе взаимодействие между молекулами отсутствует, поэтому внутренняя энергия складывается из энергии отдельных молекул.
Если газ состоит из отдельных молекул, то полную энергию газа мжно найти по формуле
;
(2.1)
где n - число молекул;
μ – молекулярный вес;
NА = 6,022·1023 моль-1- число Авогадро;
m – масса молекулы;
- средняя энергия газа, приходящаяся на
одну молекулу.
Согласно гипотезе, что энергия поступательного движения газа распределяется равномерно по степеням свободы, получим:
. (2.2)
для одного
моля
где i - число степеней
свободы, то есть число независимых
координат при равномерном распределении
энергии в декартовой системе координат.
Внутренняя энергия системы может изменяться в основном за счет двух процессов:
1) в результате совершения работы А, например, над газом;
2) сообщения системе определенного количества тепла.
Совершение работы, как правило, сопровождается перемещением внешних тел, воздействующих на систему (рис. 2.2).
Рис. 2.2. Цилиндр с поршнем, заполненный идеальным газом
По третьему закону Ньютона газ при этом совершает над поршнем работу
А= - А'. (2.3)
Сообщенное системе тепло вызовет изменение внутренней энергии, не будет связано с перемещением тел и, следовательно, не будет связано с совершением над телом работы, то есть работа относится ко всей совокупности молекул, из которых состоит тело. Сообщение тепла вызовет изменение внутренней энергии. В этом случае изменение внутренней энергии будет обусловленно тем, что отдельные молекулы нагретого тела совершат работу над отдельными молекулами тела, нагретого меньше. Совокупность макроскопических процессов (то есть захватывающих не все тело, а отдельные его молекулы) приводит к передаче энергии от тела к телу и носит название теплопередачи, а переданная путем теплопередачи энергия определяется количеством тепла Q, отданным одним телом другому. Следовательно, приращение внутренней энергии системы должно быть равно сумме совершенной над системой работы А и количества сообщенного системе тепла:
U2-U1=Q+A', (2.4)
где U1 и U2 - начальные и конечные значения внутренней энергии.
Обычно вместо работы А', совершаемой внешними телами над системой, рассматривают работу А= - А', совершаемую системой над внешними телами. Следовательно,
Q=U2-U1+A. (2.5)
Уравнение (3.5) выражает закон сохранения энергии и представляет собой первое начало термодинамики.
При вычислении совершаемой системой работы или полученного системой тепла обычно приходится разбивать рассматриваемый процесс на ряд элементарных процессов, каждый из которых соответствует малому изменению параметров системы. Поэтому, чтобы произвести вычисление, необходимо продифференцировать выражение (3.5). Получим
dQ=dU+dA. (2.6)
