- •С.П. Серегин,
- •«Биофизика и основы взаимодействия физических полей с биообъектами»
- •Раздел 2. Биофизика сложных систем 238
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография 276
- •Глава 13. Речеобразующая система человека 302
- •Глава 14. Моделирование биофизических процессов 326
- •Предисловие
- •Введение
- •Лекция 1. Общая биофизика. Биофизические процессы, протекающие в организме
- •Механические свойства биологических тканей
- •1.1. Молекулярная структура твердых тел, полимеров и жидких кристаллов
- •1.2. Механические свойства мышц и костного аппарата. Закон Фанга
- •1.3. Механические свойства сосудистой стенки
- •Вопросы для самопроверки
- •Типовые тесты текущего контроля
- •Задачи для закрепления изучаемого материала
- •Лекция 2. Термодинамика биологических сред
- •2.1. Основные термодинамические понятия и величины. Первое начало термодинамики
- •2.1.1. Понятия обратимых и необратимых процессов
- •2.1.2. Внутренняя энергия систем
- •2.2. Понятие теплоемкости. Применение первого начала термодинамики к газовым законам
- •2.2.1. Изохорический процесс
- •2.2.2. Изобарический процесс
- •2.2.3. Изотермический процесс
- •2.2.4. Адиабатический процесс
- •2.3. Применение первого начала термодинамики к биологическим процессам. Физические основы терморегуляции организма
- •2.3.1. Теплопродукция организма
- •2.4. Перенос теплоты в живых организмах. Термометрия
- •2.5. Понятие энтропии. Второе начало термодинамики
- •2.5.1. Круговые процессы
- •2.5.2. Цикл Карно
- •2.5.3. Энтропия
- •2.6. Статистическое содержание второго начала термодинамики
- •2.7. Термодинамические потенциалы
- •2.8. Открытые термодинамические системы. Уравнения Пригожина. Стационарные состояния открытой системы
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Типовые тесты текущего контроля.
- •Лекция 3. Молекулярная биофизика
- •3.1. Белковые молекулы. Структура белка
- •3.2. Нуклеиновые кислоты
- •3.3. Биосинтез белка
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Лекция 4. Физические свойства клеток
- •4.1. Строение и функции клеток и клеточных структур
- •4.2. Органеллы клеток
- •4.3. Строение ядра
- •4.4. Мембрана клетки как сферический конденсатор
- •4.5. Физико-химические методы исследования клеточных мембран
- •4.5.1. Электронная микроскопия
- •4.5.2. Рентгеноструктурный анализ
- •4.5.3. Поляриметрия
- •4.5.4. Электронный парамагнитный резонанс
- •4.5.5. Ядерный магнитный резонанс
- •4.5.6. Физическая характеристика клеточных мембран. Искусственные мембраны
- •4.6. Проницаемость клеточной мембраны
- •4.6.1. Пассивный транспорт веществ
- •4.6.2. Активный транспорт веществ в клетках
- •4.6.3. Опыт Уссинга. Ионные каналы
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Задачи для самопроверки
- •Лекция 5. Электрические явления в клетках и тканях
- •5.1. Виды биопотенциалов. Их природа. Понятие двойного электрического слоя. Дзета-потенциал
- •5.2. Определение поверхности электрического заряда эритроцитов
- •5.3. Мембранные потенциалы. Потенциал покоя и действия. Их регистрация
- •5.4. Регистрация биопотенциалов
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Лекция 6. Специальные методы, используемые для диагностики
- •6.1 Рентгеновские лучи
- •6.2. Взаимодействие рентгеновского излучения с веществами
- •6.3. Рентгеновская компьютерная томография (ркт)
- •6.4. Ангиография
- •6.5. Магнитно-резонансная томография (мрт)
- •6.6. Магнитокардиография
- •6.7. Радионуклидная диагностика
- •6.8. Действие радиации на человека
- •Вопросы для самопроверки
- •Лекция7. Биоакустические процессы
- •7.1. Характеристика звука. Его восприятие. Строение слухового анализатора
- •7.2. Биофизика инфразвука
- •7.3. Получение, распространение и регистрация ультразвука
- •7.4. Звуковое давление и акустическая энергия
- •7.5. Взаимодействие ультразвука с веществом
- •Рассмотрим поглощение ультразвуковых волн.
- •7.6. Ультразвуковые исследования (узи)
- •Вопросы для самопроверки
- •Лекция 8. Фотобиологические процессы. Биофизика зрительного восприятия
- •8.1. Процесс поглощения света
- •8.2. Зрительный аппарат человека
- •8.3. Спектроскопия
- •8.4. Термография
- •8.5. Люминисценция. Миграция энергии
- •Вопросы для самопроверки
- •Лекция 9. Индуцированное излучение. Его взаимодействие с биообъектами
- •9.1. Квантовые генераторы
- •9.2. Влияние лазерного излучения на биообъекты
- •9.3. Терапевтические лазерные приборы
- •Вопросы для самопроверки
- •Раздел 2. Биофизика сложных систем лекция10. Основы гемодинамики и биореологии
- •10.1. Вопросы биореологии
- •10.2. Гемодинамика крови. Уравнение Пуазейля и Бернулли
- •10.2.1. Уравнение Пуазейля
- •10.2.2. Уравнение Бернулли
- •10.3. Физические закономерности движения крови в сосудистой системе. Пульсовая волна
- •10.4. Клинические методы определения вязкости крови
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Лекция 11. Электропроводность биологических тканей. Импеданс
- •11.1. Электропроводность клеток и тканей для постоянного электрического тока. Лекарственный электрофорез
- •11.2. Электропроводность клеток и тканей для переменного электрического тока
- •11.3. Реография
- •11.4. Измерение электропроводности в медицинских и биологических исследованиях
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография
- •12.1. Теория Эйнтховена
- •12.2. Понятие токового диполя. Кардиография
- •12.3. Аппараты для электрографии
- •12.4. Биопотенциалы головного мозга. Электроэнцефалография
- •12.5. Миография и кожно–гальванический потенциал
- •12.6. Электростимуляция. Закон Лапика и Дюбуа-Реймона
- •Вопросы и задачи для самопроверки
- •Глава 13. Речеобразующая система человека
- •13.1. Механизм речеобразования
- •13.2. Акустическая фонетика
- •13.3. Акустическая теория речеобразования
- •13.3.1. Распространение звуков
- •13.3.2. Возбуждение звуков в голосовом тракте
- •13.3.3. Модели сигнала, основанные на акустической теории
- •Вопросы для самопроверки
- •Глава 14. Моделирование биофизических процессов
- •14.1. Виды моделей. Фармакокинетическая модель
- •14.2. Модель кровотока при локальном сужении сосудов
- •14.3 Движение крови по эластичным сосудам. Модель Франко
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Заключение
- •Библиографический список
14.2. Модель кровотока при локальном сужении сосудов
Определяющим фактором фильтрационно-реабсорбционных процессов в капиллярах являются гемодинамические параметры кровотока. Однако ряд процессов в сердечно-сосудистой системе может изменить давление и скорость кровотока как в сердечнососудистой системе в целом, так и в отдельных ее частях, тем самым повлиять и на транскапиллярный обмен. Причиной нарушения гемодинамики могут быть изменения просветов сосудов и реологических свойств крови.
Для математического описания системы кровотока и распределения давления и скорости кровотока в ней необходимо упростить систему. Поэтому введем следующие допущения:
параметры системы не изменяются во времени;
эластичность сосудов не учитывается;
не учитываются пульсации давления в различные фазы сердечного цикла, речь будет идти о среднем давлении;
течение жидкости ламинарное.
Для исследования поведения системы используем электрические чисто резистивные модели, т.е. аналоговые модели, учитывающие только стационарные режимы и не учитывающие переходные процессы (процессы установления течения). В этом случае течение крови по сосудам будет моделироваться электрическим током в цепи из активных сопротивлений.
Введем эквивалентные величины.
Сила тока во всей цепи Io = Qo – объемная скорость кровотока во всей системе.
Падение напряжения U на сопротивлении – это падение давления ΔР вдоль сосуда
Электрический потенциал – давление Р в сечении сосуда.
ЭДС источника е = Рс – среднее давление в начале аорты.
Сопротивление R = W – гидравлическое сопротивление участков ab или cd (рис. 10.2).
Сопротивление r = w – гидравлическое сопротивление участка be до его сужения.
Сопротивление r = w – гидравлическое сопротивление участка be при его сужении.
Сопротивление rn = w – гидравлическое сопротивление последующего сосудистого русла.
Сопротивление r0 = w0 – гидравлическое сопротивление предшествующего сосудистого русла.
В основу математической модели положены закон Пуазейля, условие неразрывности струи и закон Ома.
1. Сужение крупного сосуда (например, при образовании в нем тромба), рис. 14.2, а.
На рис. 14.2, б приведена эквивалентная электрическая схема.
Рис. 14.2. Сужение крупного сосуда (а) и эквивалентная электрическая схема (б). На участке bc произошло сужение сосуда
Поскольку ток в цепи должен оставаться неизменным (по аналогии постоянства кровотока) несмотря на увеличение сопротивления r > R, то должен увеличится потенциал в точке а за счет увеличения ЭДС е.
Исходя из эквивалентной электрической схемы с учетом закона Пуазейля:
Сосуд ab без сужения
. (14.13,
а)
Сосуд с сужением
(14.13,
б)
где Р0 – давление в т. а, когда сужение отсутствует; Р – давление в точке d; P'0 давление в т. а при сужении;
(14.14)
(14.15)
(14.16)
где l – длина области сужения (bc), d – изменение диаметра просвета в области сужения, L – длина участка ab и (cd), D – диаметр просвета сосуда в т. а (и d), (D-d) – диаметр просвет в зоне сужения.
Примем условно давление Р на конце данного сосуда ad равным нулю.
Тогда
(14.17)
Вычитая одно уравнение из другого, получим:
(14.18)
Найдем падение давления на участках ab, bc, cd
(14.19)
(14.20)
Распределение давления вдоль сосуда при сужении участка bс представлено на рис. 14.3. Каждая линия соответствует разному отношению d/D.
Таким образом, на базе данной чисто резистивной модели можно оценить подъем давления крови в левом желудочке сердца при возникновении сужения в крупном сосуде. Ели же кровь не будет выбрасываться под большим давлением из левого желудочка сердца при образовании тромба в крупном сосуде, то давление в конце этого сосуда (в точке d) станет ниже нормы. В результате гидростатическое капиллярное давление Ра понизится, что может привести к нарушению фильтрационно-реабсорбционного равновесия между объемами межклеточной жидкости и плазмы.
2. Сужение одного из мелких сосудов разветвленной системы (возникновение в нем тромба), рис 14.4,а. Число параллельно соединенных сосудов n >10.
На рис. 14.4,б представлена эквивалентная электрическая схема.
Так как общее гидравлическое
сопротивление системы неповрежденных
сосудов существенно меньше, чем
гидравлическое сопротивление сосуда
с тромбом , то
.
До сужения общее эквивалентное сопротивление участка ad; Rобщ =rс/h (rс эквивалентно гидравлическому сопротивлению одного сосуда без сужения). После сужения Rобщ = rc /(n-1)
Поскольку
при
n
>10, то можно считать, что общее
сопротивление системы не изменилось.
Следовательно, ток I0
в цепи в целом и падение напряжения (Pa
–
Pd)
на участке ad
остались прежними. В тоже время произошло
перераспределение тока между
сопротивлениями (и соответственно
кровотока между сосудами: боль шая часть
потока потекла в неповрежденные сосуды).
Изменился характер падения давления
вдоль поврежденного сосуда: в связи с
увеличением гидравлического сопротивления
увеличилось ΔР вдоль
Рис. 14.4 Сужение (образование тромба) одного из мелких сосудов разветвленной системы (а) и эквивалентная электрическая схема (б), rэ – эквивалентное шунтирующее сопротивление, соответствующее общему гидравлическому сопротивлению всех параллельно соединенных сосудов без тромба
суженного участка и уменьшилось ΔР до и после него из-за уменьшения кровотока в поврежденном сосуде. Рассчитаем падение давления и объемную скорость кровотока.
а) Распределение давления.
Исходя из закона Ома и эквивалентной схемы (рис. 14.4, б) можно получить:
Напряжение |
Падение давления |
|
|
Гидравлическое сопротивление участков вычисляется по формулам (14.14, 14.15, 14.16).
Распределение давления вдоль сосуда, в котором произошло локальное сужение, рассчитанное по выведенным выше формулам, представлено на рис. 14.5.
Образование тромба приводит к нарушению линейной зависимости падения давления вдоль капилляра. Так, в точке b гидростатическое давление становится выше нормы, а в точке с - ниже. Изменяется и градиент гидростатического давления вдоль капилляра по сравнению со стандартным значением: уменьшается на участках ab и cd и резко увеличивается на bс. В результате локальное изменение просвета капилляра может создать в капилляре пространственно неоднородные условия для протекания процессов выхода жидкости в межклеточное пространство и возвращения ее в сосуд, что может привести к нарушению фильтрационно-реабсорбционного равновесия. При этом результат транскапиллярного обмена может зависеть и от местоположения тромба в капилляре, а именно от того, к какому концу он находится ближе - к артериальному или венозному.
Рис. 14.5 Распределение давления вдоль мелкого сосуда в разветвленной системе (1 - сосуд без сужения; 2 - сосуд с сужением; ab=cd - длина участков без сужения, bс - длина участков с сужением)
б) Объемная скорость кровотока.
Введем величины:
Qo – объемная скорость кровотока до и после разветвления (в точках а и d),
qo – объемная скорость кровотока в каждом из неповрежденных сосудов (когда нет сужения сосуда),
q – объемная скорость кровотока в каждом из неповрежденных сосудов (когда произошло локальное сужение одного сосуда),
q' – объемная скорость кровотока в сосуде, просвет которого изменился.
В отсутствие сужения считаем все сосуды одинаковыми, в этом случае кровоток распределяется равномерно по всем сосудам:
Исходя из эквивалентной электрической схемы (рис. 14.5, б) с учетом закона Ома для участка цепи можно получить:
(14.21)
Рис. 14.6. Влияние размеров области сужения в мелком сосуде на кровоток в нем (кривые соответствуют разным длинам участка сужения: для линий 1,2,3 отношение l/L равно 0,04; 0,2; 0,5; соответственно); справа схематично показаны относительные длины сужения bс и сосуда ab
Уменьшение просвета сосуда приводит к резкому падению кровотока в этом сосуде. Причем зависимость q' от d нелинейная (рис. 14.6). Когда сужение отсутствует (d=0), тo кровоток в сосуде не изменяется: q'/qo=l
(рис. 14.6). Когда просвет уменьшается до нуля (тромб полностью перекрывает сосуд, d=D), то в этот сосуд кровь не идет: q' = 0.
Образование тромбов в капиллярах может происходить в результате действия ионизирующего излучения на организм, В этом случае в капиллярах может возникнуть стаз крови, что повлияет на транспорт веществ между плазмой и межклеточной жидкостью.
Уменьшение скорости кровотока в поврежденном сосуде может привести к снижению интенсивности обмена веществ между кровью и тканями, вызвать гипоксию близлежащих участков тканей и возможно даже их некроз. С подобными эффектами могут быть связаны такие заболевания, как инфаркт, инсульт.
В данных задачах не рассматривался обратный эффект влияния скорости кровотока и падения давления на процесс образования тромбов. В то же время известно, что падение скорости кровотока и снижение падения давления в сосуде создают предпосылки для их возникновения. Об этом свидетельствует частое обнаружение тромбов в участках резкого сужения просвета артерий.
Кроме этого, вследствие неравномерного сужения просвета сосудов (или локальное расширения) может возникнуть турбулентное (вихревое) движение кровотока. Турбулентное движение создает условия для оседания тромбоцитов и образование агрегатов. Этот процесс часто является пусковым в формировании тромба. Кроме этого, если тромб слабо связан со стенкой сосуда, то под действием резкого перепада давления вдоль него он может начать двигаться. В данных моделях не рассматриваются возможные скачки на границах сужения (по уравнению Бернулли).
в) Изменение вязкости крови
Перепад давления (а следовательно, – grad p) в сосуде изменяется, если изменяется вязкость крови; с увеличением вязкости он линейно растет:,
gradp
=
(14.22)
На рис. 14.7 приведено распределение давления вдоль сосуда в норме и при некоторых заболеваниях.
В результате на выходе из данного сосуда давление изменится:
Р1 < Р2, Р3>Р2,
что может привести к изменению гемодинамических параметров вдоль последующих сосудов. Изменение гидростатического давления в связи с уменьшением или увеличением вязкости крови вызовет изменение капиллярного давления, что может явиться причиной нарушения фильтрационно-реабсорбционного равновесия.
Таким образом, чисто резистивная модель позволяет качественно проанализировать изменение гемодинамических параметров системы при локальных сужениях крупных и мелких сосудов и сделать качественные выводы о влиянии этих нарушений на протекание фильтрационно-реабсорбционных процессов в капиллярах.
Рис. 14.7. Распределение давления вдоль сосуда для различных вязкостей крови η1 > η2 > η3
Сердечно-сосудистая система нелинейная система со сложными взаимно-обратными связями, анализ которой необходимо проводить исходя из системного подхода к разнообразным процессам, протекающим в ней.
