- •С.П. Серегин,
- •«Биофизика и основы взаимодействия физических полей с биообъектами»
- •Раздел 2. Биофизика сложных систем 238
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография 276
- •Глава 13. Речеобразующая система человека 302
- •Глава 14. Моделирование биофизических процессов 326
- •Предисловие
- •Введение
- •Лекция 1. Общая биофизика. Биофизические процессы, протекающие в организме
- •Механические свойства биологических тканей
- •1.1. Молекулярная структура твердых тел, полимеров и жидких кристаллов
- •1.2. Механические свойства мышц и костного аппарата. Закон Фанга
- •1.3. Механические свойства сосудистой стенки
- •Вопросы для самопроверки
- •Типовые тесты текущего контроля
- •Задачи для закрепления изучаемого материала
- •Лекция 2. Термодинамика биологических сред
- •2.1. Основные термодинамические понятия и величины. Первое начало термодинамики
- •2.1.1. Понятия обратимых и необратимых процессов
- •2.1.2. Внутренняя энергия систем
- •2.2. Понятие теплоемкости. Применение первого начала термодинамики к газовым законам
- •2.2.1. Изохорический процесс
- •2.2.2. Изобарический процесс
- •2.2.3. Изотермический процесс
- •2.2.4. Адиабатический процесс
- •2.3. Применение первого начала термодинамики к биологическим процессам. Физические основы терморегуляции организма
- •2.3.1. Теплопродукция организма
- •2.4. Перенос теплоты в живых организмах. Термометрия
- •2.5. Понятие энтропии. Второе начало термодинамики
- •2.5.1. Круговые процессы
- •2.5.2. Цикл Карно
- •2.5.3. Энтропия
- •2.6. Статистическое содержание второго начала термодинамики
- •2.7. Термодинамические потенциалы
- •2.8. Открытые термодинамические системы. Уравнения Пригожина. Стационарные состояния открытой системы
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Типовые тесты текущего контроля.
- •Лекция 3. Молекулярная биофизика
- •3.1. Белковые молекулы. Структура белка
- •3.2. Нуклеиновые кислоты
- •3.3. Биосинтез белка
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Лекция 4. Физические свойства клеток
- •4.1. Строение и функции клеток и клеточных структур
- •4.2. Органеллы клеток
- •4.3. Строение ядра
- •4.4. Мембрана клетки как сферический конденсатор
- •4.5. Физико-химические методы исследования клеточных мембран
- •4.5.1. Электронная микроскопия
- •4.5.2. Рентгеноструктурный анализ
- •4.5.3. Поляриметрия
- •4.5.4. Электронный парамагнитный резонанс
- •4.5.5. Ядерный магнитный резонанс
- •4.5.6. Физическая характеристика клеточных мембран. Искусственные мембраны
- •4.6. Проницаемость клеточной мембраны
- •4.6.1. Пассивный транспорт веществ
- •4.6.2. Активный транспорт веществ в клетках
- •4.6.3. Опыт Уссинга. Ионные каналы
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Задачи для самопроверки
- •Лекция 5. Электрические явления в клетках и тканях
- •5.1. Виды биопотенциалов. Их природа. Понятие двойного электрического слоя. Дзета-потенциал
- •5.2. Определение поверхности электрического заряда эритроцитов
- •5.3. Мембранные потенциалы. Потенциал покоя и действия. Их регистрация
- •5.4. Регистрация биопотенциалов
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Лекция 6. Специальные методы, используемые для диагностики
- •6.1 Рентгеновские лучи
- •6.2. Взаимодействие рентгеновского излучения с веществами
- •6.3. Рентгеновская компьютерная томография (ркт)
- •6.4. Ангиография
- •6.5. Магнитно-резонансная томография (мрт)
- •6.6. Магнитокардиография
- •6.7. Радионуклидная диагностика
- •6.8. Действие радиации на человека
- •Вопросы для самопроверки
- •Лекция7. Биоакустические процессы
- •7.1. Характеристика звука. Его восприятие. Строение слухового анализатора
- •7.2. Биофизика инфразвука
- •7.3. Получение, распространение и регистрация ультразвука
- •7.4. Звуковое давление и акустическая энергия
- •7.5. Взаимодействие ультразвука с веществом
- •Рассмотрим поглощение ультразвуковых волн.
- •7.6. Ультразвуковые исследования (узи)
- •Вопросы для самопроверки
- •Лекция 8. Фотобиологические процессы. Биофизика зрительного восприятия
- •8.1. Процесс поглощения света
- •8.2. Зрительный аппарат человека
- •8.3. Спектроскопия
- •8.4. Термография
- •8.5. Люминисценция. Миграция энергии
- •Вопросы для самопроверки
- •Лекция 9. Индуцированное излучение. Его взаимодействие с биообъектами
- •9.1. Квантовые генераторы
- •9.2. Влияние лазерного излучения на биообъекты
- •9.3. Терапевтические лазерные приборы
- •Вопросы для самопроверки
- •Раздел 2. Биофизика сложных систем лекция10. Основы гемодинамики и биореологии
- •10.1. Вопросы биореологии
- •10.2. Гемодинамика крови. Уравнение Пуазейля и Бернулли
- •10.2.1. Уравнение Пуазейля
- •10.2.2. Уравнение Бернулли
- •10.3. Физические закономерности движения крови в сосудистой системе. Пульсовая волна
- •10.4. Клинические методы определения вязкости крови
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Лекция 11. Электропроводность биологических тканей. Импеданс
- •11.1. Электропроводность клеток и тканей для постоянного электрического тока. Лекарственный электрофорез
- •11.2. Электропроводность клеток и тканей для переменного электрического тока
- •11.3. Реография
- •11.4. Измерение электропроводности в медицинских и биологических исследованиях
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография
- •12.1. Теория Эйнтховена
- •12.2. Понятие токового диполя. Кардиография
- •12.3. Аппараты для электрографии
- •12.4. Биопотенциалы головного мозга. Электроэнцефалография
- •12.5. Миография и кожно–гальванический потенциал
- •12.6. Электростимуляция. Закон Лапика и Дюбуа-Реймона
- •Вопросы и задачи для самопроверки
- •Глава 13. Речеобразующая система человека
- •13.1. Механизм речеобразования
- •13.2. Акустическая фонетика
- •13.3. Акустическая теория речеобразования
- •13.3.1. Распространение звуков
- •13.3.2. Возбуждение звуков в голосовом тракте
- •13.3.3. Модели сигнала, основанные на акустической теории
- •Вопросы для самопроверки
- •Глава 14. Моделирование биофизических процессов
- •14.1. Виды моделей. Фармакокинетическая модель
- •14.2. Модель кровотока при локальном сужении сосудов
- •14.3 Движение крови по эластичным сосудам. Модель Франко
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Заключение
- •Библиографический список
Вопросы для самопроверки
Какие виды поляризации вам знакомы?
В чем сущность структурной поляризации?
Гальванизация. Для какой цели она используется?
Напишите закон Ома для биологических тканей.
Импеданс для биологических тканей. Какую роль он играет в диагностике заболеваний?
Реография. В чем ее сущность? Перечислите основные блоки реографа.
О чем говорит уменьшение диэлектрической проницаемости при ее измерении в области γ-дисперсии.
Для каких целей используется α-дисперсия?
Чему равен коэффициент поляризации, используемый для жизнеспособности биологической ткани?
Тесты текущего контроля
1. Выберите уравнение закона Ома для биологической ткани:
2. К какому виду относится поляризация, если время релаксации совпадает с временем поворота молекул и зависит от вязкости
среды температуры и радиуса молекул
электронная поляризация;
ионная поляризация;
дипольная поляризация;
макроструктурная поляризация;
электродная поляризация
3. Выберите значения поляризационной емкости:
4. Выберите значения емкостного сопротивления и импеданса для биологической ткани:
5. Какая дисперсия при исследовании зависимости диэлектрической проницаемости от частоты используется для определения объема взвешенных коллоидных частиц:
α-дисперсии;
β-дисперсии;
γ-дисперсии
Задачи
1. При воспалительных процессах в тканях структура клеточных мембран изменяется и соответственно меняется их электроемкость. Измерения емкостного сопротивления ткани в норме проводились при частоте переменного тока 1,3 кГц. Измерения емкостного сопротивления той же ткани при воспалении проводились при тех же условиях, но частота переменного тока была 6,2 кГц. Величина емкостного сопротивления во втором случае оказалась в 3,5 раза меньше, чем в первом. Во сколько раз уменьшилась электроемкость ткани при воспалении?
2. Какова должна быть длительность прямоугольных импульсов электрического тока, если при наложении электродов на участок тела человека порог раздражения наступает при токе 12 мА? Величина реобазы 4,2 мА. Константа Вейсса = 2,310-6 Ас. Вычислить сопротивление этого участка тела, если напряжение на электродах 20 В.
3. Разность потенциалов между внутренней и внешней поверхностями мембраны митохондрии внутри клетки печени крысы составляет 200 мВ. Толщина мембраны 8 нм. Какова напряженность электрического поля в мембране? Вычислите электроемкость внешней мембраны митохондрии, если площадь ее поверхности 13 мкм2, считая, что относительная диэлектрическая проницаемость мембраны равна 5.
4. Во сколько раз изменится полное сопротивление образца мышечной ткани при измерении его в цепях переменного тока с частой 10 кГц и 100 кГц? Активное сопротивление ткани 80 Ом, ее электроемкость 0,5 мкФ.
5. Напряжение на плоском воздушном конденсаторе 24 В. Человек, стоя на изолирующей подставке, касается руками противоположных обкладок конденсатора, и при этом их общее напряжение становится 21,4 В. Определить электроемкость человека, если площадь пластин конденсатора 1130 см2 и расстояние между ними 10 мм.
6. Для изучения структуры и функции биологических мембран используют модели - искусственные фосфолипидные мембраны, состоящие из биомолекулярного слоя фосфолипидов. Толщина искусственной мембраны достигает около 6 нм. Найдите электроемкость 1 см2 такой мембраны, считая ее r=3. Сравните полученную электроемкость с аналогичной характеристикой конденсатора, расстояние между пластинами которого 1мм.
7. Объем жировой ткани, подвергающейся УВЧ-терапии, имеет площадь 8 см2 и толщину 3 см. Каково его активное сопротивление? Вычислить полное сопротивление этого участка ткани, если его электроемкость 85 пФ и частота электрического поля, генерируемого аппаратом УВЧ-терапии, равна 4,68 МГц. Удельное сопротивление жировой ткани принять равным 35 Ом·м.
8. Какой электроемкостью обладает миелиновая оболочка участка цилиндрического нервного волокна длиной 5 мм, если его диаметр 16 мкм и толщина миелинового слоя 1,5 мкм? Относительная диэлектрическая проницаемость миелина равна 45. Расчет провести по формуле емкости плоского конденсатора.
9. Отношение индуктивного сопротивления объекта к его емкостному сопротивлению оказалось равным 0,4. При какой частоте переменного тока проводились измерения, если индуктивность объекта 4 мГн, а его электроемкость 30 мкФ?
