- •С.П. Серегин,
- •«Биофизика и основы взаимодействия физических полей с биообъектами»
- •Раздел 2. Биофизика сложных систем 238
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография 276
- •Глава 13. Речеобразующая система человека 302
- •Глава 14. Моделирование биофизических процессов 326
- •Предисловие
- •Введение
- •Лекция 1. Общая биофизика. Биофизические процессы, протекающие в организме
- •Механические свойства биологических тканей
- •1.1. Молекулярная структура твердых тел, полимеров и жидких кристаллов
- •1.2. Механические свойства мышц и костного аппарата. Закон Фанга
- •1.3. Механические свойства сосудистой стенки
- •Вопросы для самопроверки
- •Типовые тесты текущего контроля
- •Задачи для закрепления изучаемого материала
- •Лекция 2. Термодинамика биологических сред
- •2.1. Основные термодинамические понятия и величины. Первое начало термодинамики
- •2.1.1. Понятия обратимых и необратимых процессов
- •2.1.2. Внутренняя энергия систем
- •2.2. Понятие теплоемкости. Применение первого начала термодинамики к газовым законам
- •2.2.1. Изохорический процесс
- •2.2.2. Изобарический процесс
- •2.2.3. Изотермический процесс
- •2.2.4. Адиабатический процесс
- •2.3. Применение первого начала термодинамики к биологическим процессам. Физические основы терморегуляции организма
- •2.3.1. Теплопродукция организма
- •2.4. Перенос теплоты в живых организмах. Термометрия
- •2.5. Понятие энтропии. Второе начало термодинамики
- •2.5.1. Круговые процессы
- •2.5.2. Цикл Карно
- •2.5.3. Энтропия
- •2.6. Статистическое содержание второго начала термодинамики
- •2.7. Термодинамические потенциалы
- •2.8. Открытые термодинамические системы. Уравнения Пригожина. Стационарные состояния открытой системы
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Типовые тесты текущего контроля.
- •Лекция 3. Молекулярная биофизика
- •3.1. Белковые молекулы. Структура белка
- •3.2. Нуклеиновые кислоты
- •3.3. Биосинтез белка
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Лекция 4. Физические свойства клеток
- •4.1. Строение и функции клеток и клеточных структур
- •4.2. Органеллы клеток
- •4.3. Строение ядра
- •4.4. Мембрана клетки как сферический конденсатор
- •4.5. Физико-химические методы исследования клеточных мембран
- •4.5.1. Электронная микроскопия
- •4.5.2. Рентгеноструктурный анализ
- •4.5.3. Поляриметрия
- •4.5.4. Электронный парамагнитный резонанс
- •4.5.5. Ядерный магнитный резонанс
- •4.5.6. Физическая характеристика клеточных мембран. Искусственные мембраны
- •4.6. Проницаемость клеточной мембраны
- •4.6.1. Пассивный транспорт веществ
- •4.6.2. Активный транспорт веществ в клетках
- •4.6.3. Опыт Уссинга. Ионные каналы
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Задачи для самопроверки
- •Лекция 5. Электрические явления в клетках и тканях
- •5.1. Виды биопотенциалов. Их природа. Понятие двойного электрического слоя. Дзета-потенциал
- •5.2. Определение поверхности электрического заряда эритроцитов
- •5.3. Мембранные потенциалы. Потенциал покоя и действия. Их регистрация
- •5.4. Регистрация биопотенциалов
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Лекция 6. Специальные методы, используемые для диагностики
- •6.1 Рентгеновские лучи
- •6.2. Взаимодействие рентгеновского излучения с веществами
- •6.3. Рентгеновская компьютерная томография (ркт)
- •6.4. Ангиография
- •6.5. Магнитно-резонансная томография (мрт)
- •6.6. Магнитокардиография
- •6.7. Радионуклидная диагностика
- •6.8. Действие радиации на человека
- •Вопросы для самопроверки
- •Лекция7. Биоакустические процессы
- •7.1. Характеристика звука. Его восприятие. Строение слухового анализатора
- •7.2. Биофизика инфразвука
- •7.3. Получение, распространение и регистрация ультразвука
- •7.4. Звуковое давление и акустическая энергия
- •7.5. Взаимодействие ультразвука с веществом
- •Рассмотрим поглощение ультразвуковых волн.
- •7.6. Ультразвуковые исследования (узи)
- •Вопросы для самопроверки
- •Лекция 8. Фотобиологические процессы. Биофизика зрительного восприятия
- •8.1. Процесс поглощения света
- •8.2. Зрительный аппарат человека
- •8.3. Спектроскопия
- •8.4. Термография
- •8.5. Люминисценция. Миграция энергии
- •Вопросы для самопроверки
- •Лекция 9. Индуцированное излучение. Его взаимодействие с биообъектами
- •9.1. Квантовые генераторы
- •9.2. Влияние лазерного излучения на биообъекты
- •9.3. Терапевтические лазерные приборы
- •Вопросы для самопроверки
- •Раздел 2. Биофизика сложных систем лекция10. Основы гемодинамики и биореологии
- •10.1. Вопросы биореологии
- •10.2. Гемодинамика крови. Уравнение Пуазейля и Бернулли
- •10.2.1. Уравнение Пуазейля
- •10.2.2. Уравнение Бернулли
- •10.3. Физические закономерности движения крови в сосудистой системе. Пульсовая волна
- •10.4. Клинические методы определения вязкости крови
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Лекция 11. Электропроводность биологических тканей. Импеданс
- •11.1. Электропроводность клеток и тканей для постоянного электрического тока. Лекарственный электрофорез
- •11.2. Электропроводность клеток и тканей для переменного электрического тока
- •11.3. Реография
- •11.4. Измерение электропроводности в медицинских и биологических исследованиях
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография
- •12.1. Теория Эйнтховена
- •12.2. Понятие токового диполя. Кардиография
- •12.3. Аппараты для электрографии
- •12.4. Биопотенциалы головного мозга. Электроэнцефалография
- •12.5. Миография и кожно–гальванический потенциал
- •12.6. Электростимуляция. Закон Лапика и Дюбуа-Реймона
- •Вопросы и задачи для самопроверки
- •Глава 13. Речеобразующая система человека
- •13.1. Механизм речеобразования
- •13.2. Акустическая фонетика
- •13.3. Акустическая теория речеобразования
- •13.3.1. Распространение звуков
- •13.3.2. Возбуждение звуков в голосовом тракте
- •13.3.3. Модели сигнала, основанные на акустической теории
- •Вопросы для самопроверки
- •Глава 14. Моделирование биофизических процессов
- •14.1. Виды моделей. Фармакокинетическая модель
- •14.2. Модель кровотока при локальном сужении сосудов
- •14.3 Движение крови по эластичным сосудам. Модель Франко
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Заключение
- •Библиографический список
8.3. Спектроскопия
Как отмечалось, основной задачей современной биофизики является проникновение на самые глубокие молекулярные уровни структурной организации живого.
К таким биофизическим методам, которые дают прямую информацию о молекулярных процессах, протекающих в организме, можно отнести люминесцентную, инфракрасную и лазерную спектроскопию; а также термографические методы исследования.
Метод исследования фотобиологических процессов с помощью спектров называется адсорбционной спектрофотометрией. Спектры поглощения изучаются с помощью специальных приборов - спектрофотометров. В основе спектроскопии лежит зависимость фотобиологического процесса от длины волны D=f().
Если спектры изучаются с помощью спектрофотометра в инфракрасном свете, то сам метод называется ИК-спектроскопией. Если используется индуцированное излучение, то лазерная спектроскопия. Если же спектры излучаются при люминесценции, то метод называется люминесцентной спектроскопией. Прибор, используемый при спектроскопии, называется спектрофотометром (рис.8.4). Луч света от источника 1 падает в монохроматор 2 - прибор, дающий излучение строго определенной длины волны. Далее монохроматический луч проходит через кюветы 3, содержащие исследуемое вещество и далее в ФЭУ (фотоэлектроумножитель 4), после которого в регистрирующее устройство 5, отрегулированное по акустической плотности.
Спектроскопический метод позволяет выяснить, какое вещество ответственно в данном процессе за поглощение света. Это достигается в результате сравнения спектров исследуемого вещества со спектром известных веществ. По положению максимума на шкале длин волн можно определить длину волны света, преимущественно поглощаемого этим веществом. Зная длину волны поглощенного света, определяют энергию поглощения квантов. По величине энергии узнают переходы молекул из одного энергетического состояния в другое и рассчитывают расположение электронов и колебательных энергетических уровней молекулы.
Рис. 8.4. Схема спектрофотометра
При так называемой адсорбционной ИК-спектроскопии используют два импульса. Один, имеющий достаточную мощность, называют возбуждением. Другой, более слабый, называют зондирующим.
Методика заключается в следующем: фокусируется луч инфракрасного или лазерного излучения на выбранную с помощью микроскопа маленькую область мишени. Используется такая температура, при которой возможен спектральный анализ, то есть можно получить спектр поглощения. Полученный сплошной спектр фотографируется с помощью спектрометра. Используется поточная методика in vitra, то есть вне организма. Берется биологическая ткань размером 50 мм и весом 10-7 г, облучается лазерным лучом длиной волны 693 Å; N=30 кДж.
В данном случае под действием лазерного излучения происходит испарение вещества. Получают атомный спектр испаряющегося материала, который фотографируют уже на спектрографе (спектральный анализ для лазерных лучей). Обычно используются ударные волны, которые распространяются со звуковыми скоростями и используются для регистрации спектров поглощения.
