- •С.П. Серегин,
- •«Биофизика и основы взаимодействия физических полей с биообъектами»
- •Раздел 2. Биофизика сложных систем 238
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография 276
- •Глава 13. Речеобразующая система человека 302
- •Глава 14. Моделирование биофизических процессов 326
- •Предисловие
- •Введение
- •Лекция 1. Общая биофизика. Биофизические процессы, протекающие в организме
- •Механические свойства биологических тканей
- •1.1. Молекулярная структура твердых тел, полимеров и жидких кристаллов
- •1.2. Механические свойства мышц и костного аппарата. Закон Фанга
- •1.3. Механические свойства сосудистой стенки
- •Вопросы для самопроверки
- •Типовые тесты текущего контроля
- •Задачи для закрепления изучаемого материала
- •Лекция 2. Термодинамика биологических сред
- •2.1. Основные термодинамические понятия и величины. Первое начало термодинамики
- •2.1.1. Понятия обратимых и необратимых процессов
- •2.1.2. Внутренняя энергия систем
- •2.2. Понятие теплоемкости. Применение первого начала термодинамики к газовым законам
- •2.2.1. Изохорический процесс
- •2.2.2. Изобарический процесс
- •2.2.3. Изотермический процесс
- •2.2.4. Адиабатический процесс
- •2.3. Применение первого начала термодинамики к биологическим процессам. Физические основы терморегуляции организма
- •2.3.1. Теплопродукция организма
- •2.4. Перенос теплоты в живых организмах. Термометрия
- •2.5. Понятие энтропии. Второе начало термодинамики
- •2.5.1. Круговые процессы
- •2.5.2. Цикл Карно
- •2.5.3. Энтропия
- •2.6. Статистическое содержание второго начала термодинамики
- •2.7. Термодинамические потенциалы
- •2.8. Открытые термодинамические системы. Уравнения Пригожина. Стационарные состояния открытой системы
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Типовые тесты текущего контроля.
- •Лекция 3. Молекулярная биофизика
- •3.1. Белковые молекулы. Структура белка
- •3.2. Нуклеиновые кислоты
- •3.3. Биосинтез белка
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Лекция 4. Физические свойства клеток
- •4.1. Строение и функции клеток и клеточных структур
- •4.2. Органеллы клеток
- •4.3. Строение ядра
- •4.4. Мембрана клетки как сферический конденсатор
- •4.5. Физико-химические методы исследования клеточных мембран
- •4.5.1. Электронная микроскопия
- •4.5.2. Рентгеноструктурный анализ
- •4.5.3. Поляриметрия
- •4.5.4. Электронный парамагнитный резонанс
- •4.5.5. Ядерный магнитный резонанс
- •4.5.6. Физическая характеристика клеточных мембран. Искусственные мембраны
- •4.6. Проницаемость клеточной мембраны
- •4.6.1. Пассивный транспорт веществ
- •4.6.2. Активный транспорт веществ в клетках
- •4.6.3. Опыт Уссинга. Ионные каналы
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Задачи для самопроверки
- •Лекция 5. Электрические явления в клетках и тканях
- •5.1. Виды биопотенциалов. Их природа. Понятие двойного электрического слоя. Дзета-потенциал
- •5.2. Определение поверхности электрического заряда эритроцитов
- •5.3. Мембранные потенциалы. Потенциал покоя и действия. Их регистрация
- •5.4. Регистрация биопотенциалов
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Лекция 6. Специальные методы, используемые для диагностики
- •6.1 Рентгеновские лучи
- •6.2. Взаимодействие рентгеновского излучения с веществами
- •6.3. Рентгеновская компьютерная томография (ркт)
- •6.4. Ангиография
- •6.5. Магнитно-резонансная томография (мрт)
- •6.6. Магнитокардиография
- •6.7. Радионуклидная диагностика
- •6.8. Действие радиации на человека
- •Вопросы для самопроверки
- •Лекция7. Биоакустические процессы
- •7.1. Характеристика звука. Его восприятие. Строение слухового анализатора
- •7.2. Биофизика инфразвука
- •7.3. Получение, распространение и регистрация ультразвука
- •7.4. Звуковое давление и акустическая энергия
- •7.5. Взаимодействие ультразвука с веществом
- •Рассмотрим поглощение ультразвуковых волн.
- •7.6. Ультразвуковые исследования (узи)
- •Вопросы для самопроверки
- •Лекция 8. Фотобиологические процессы. Биофизика зрительного восприятия
- •8.1. Процесс поглощения света
- •8.2. Зрительный аппарат человека
- •8.3. Спектроскопия
- •8.4. Термография
- •8.5. Люминисценция. Миграция энергии
- •Вопросы для самопроверки
- •Лекция 9. Индуцированное излучение. Его взаимодействие с биообъектами
- •9.1. Квантовые генераторы
- •9.2. Влияние лазерного излучения на биообъекты
- •9.3. Терапевтические лазерные приборы
- •Вопросы для самопроверки
- •Раздел 2. Биофизика сложных систем лекция10. Основы гемодинамики и биореологии
- •10.1. Вопросы биореологии
- •10.2. Гемодинамика крови. Уравнение Пуазейля и Бернулли
- •10.2.1. Уравнение Пуазейля
- •10.2.2. Уравнение Бернулли
- •10.3. Физические закономерности движения крови в сосудистой системе. Пульсовая волна
- •10.4. Клинические методы определения вязкости крови
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Лекция 11. Электропроводность биологических тканей. Импеданс
- •11.1. Электропроводность клеток и тканей для постоянного электрического тока. Лекарственный электрофорез
- •11.2. Электропроводность клеток и тканей для переменного электрического тока
- •11.3. Реография
- •11.4. Измерение электропроводности в медицинских и биологических исследованиях
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография
- •12.1. Теория Эйнтховена
- •12.2. Понятие токового диполя. Кардиография
- •12.3. Аппараты для электрографии
- •12.4. Биопотенциалы головного мозга. Электроэнцефалография
- •12.5. Миография и кожно–гальванический потенциал
- •12.6. Электростимуляция. Закон Лапика и Дюбуа-Реймона
- •Вопросы и задачи для самопроверки
- •Глава 13. Речеобразующая система человека
- •13.1. Механизм речеобразования
- •13.2. Акустическая фонетика
- •13.3. Акустическая теория речеобразования
- •13.3.1. Распространение звуков
- •13.3.2. Возбуждение звуков в голосовом тракте
- •13.3.3. Модели сигнала, основанные на акустической теории
- •Вопросы для самопроверки
- •Глава 14. Моделирование биофизических процессов
- •14.1. Виды моделей. Фармакокинетическая модель
- •14.2. Модель кровотока при локальном сужении сосудов
- •14.3 Движение крови по эластичным сосудам. Модель Франко
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Заключение
- •Библиографический список
1.1. Молекулярная структура твердых тел, полимеров и жидких кристаллов
Все твердые тела делятся на кристаллические и аморфные. Вещество, у которого частицы располагаются в строго определенном порядке, характерном для данного вещества, называются кристаллическими. Особенностью кристаллических тел является анизотропия, то есть зависимость физических свойств от направления, в котором эти явления наблюдаются. Одни кристаллы обладают различной механической прочностью, другие по разным направлениям имеют отличия в оптических свойствах и т.п. Большинство веществ в природе имеют кристаллическое строение. Аморфные тела изотропны, то есть физические свойства данных тел по всем направлениям одинаковы (валидол и т.д.).
Различие между кристаллическими и аморфными телами отчетливо проявляется при плавлении. Кристаллические вещества имеют температуру плавления, которая считается постоянной при нагревании вещества. В данном случае тепловая энергия идет на разрушение кристаллической решетки. Таким образом, температурой плавления называется температура, при которой твердая фаза находится в динамическом равновесии с энергией плавления. При кристаллизации выделяется такое же количество теплоты, которое было поглощено при плавлении. Температура расплава повышается до температуры плавления.
При нагревании аморфного вещества его температура все время повышается. Происходит размягчение вещества. Уменьшается его вязкость. Вещество постепенно из твердого превращается в жидкое. Определенных температур плавления у аморфных тел нет. При охлаждении аморфные тела постепенно затвердевают. Увеличивается их вязкость. Поэтому аморфные вещества называют переохлажденными жидкостями.
Обратимся к кристаллам. В зависимости от природы вещества, его кристаллической решетки, кристаллы делятся на атомные, ионные, металлические и молекулярные.
Для оценки параметров кристаллических решеток, для изучения их молекулярной структуры используется метод электронографии и рентгеноструктурного анализа. На основании этих методов было доказано, что простые элементарные вещества имеют атомную решетку. Молекулярные силы в них образуются в результате обмена электронами и образования между атомами общих электронных оболочек.
Два электрона от разных атомов с противоположно направленными силами спариваются на одной орбите и связывают ядра этих атомов силой притяжения. Между атомами образуется обменная, или ковалентная, связь, которая характеризуется высокой прочностью. Такая связь характерна для органических веществ. Как правило, вещества с ковалентной связью атомов отличаются твердостью, высокой температурой плавления и малой растворимостью. К таким веществам относятся ряд активных фармакологических веществ: стрептоцид, кристаллический пенициллин и т.д.
В веществах с ионным строением каждый ион связан с окружающими его ионами противоположного знака силами электростатического притяжения. Вещества с таким строением тверды, хрупки, имеют высокую температуру плавления и хорошо растворимы в воде. Примером может служить поваренная соль с кубической пространственной решеткой.
В металлах пространственная решетка состоит из атомов, потерявших наибольшее число связанных с ядром внешних электронов, то есть состоит из ионов. Оторвавшиеся электроны называются свободными и образуют «электронный газ». Наличие в металлах свободных электронов обусловливает их высокую тепло- и электропроводность.
Взаимосвязь между молекулами и ионами образуется вследствие действия сил Ван-Дер-Ваальса. Это наиболее универсальные в природе силы, которые встречаются не только у твердых тел, но и у жидкостей органической природы.
Биологические жидкости животных и человека по своей молекулярной структуре близки к жидким кристаллам. Жидкими кристаллами называются вещества, которые обладают свойствами жидкостей и кристаллов. По своим механическим свойствам эти вещества похожи на жидкости, так как обладают свойствам текучести. По оптическим свойствам жидкие кристаллы ведут себя как анизотропные вещества - кристаллы. Они вращают плоскость поляризации, обнаруживают двойное лучепреломление. Чаще всего жидкокристаллические свойства жидкие кристаллы проявляют в определенном температурном интервале, выше которого они находятся в аморфно-жидком состоянии, а ниже - в твердокристаллическом.
По молекулярной упорядоченности кристаллы делятся на нематические и смектические. В первых молекулы ориентированы параллельно, а центры расположены беспорядочно, а во вторых молекулы располагаются параллельными упорядоченными слоями. Особый класс составляют кристаллы холестерического типа. Молекулы у таких кристаллов, как и в смектических, собраны в слои. Однако внутри каждого слоя параллельное расположение осей молекул напоминает нематическое состояние.
Молекулярная структура холестерических жидких кристаллов очень чувствительна к любому внешнему воздействию. Малое возмущение может нарушить слабые межмолекулярные силы, что приводит к заметному изменению оптических свойств. В медицине это позволяет фиксировать расположение вен, артерий и других образований, имеющих иную теплоотдачу, чем у окружающей среды. Исследование жидких кристаллов в живых организмах - сверхактуальная перспективная область, так как структура гемоглобина, а также ряда других органических веществ, очень схожа с молекулярным строением жидких кристаллов.
В настоящее время в медицине получили широкое применение полимеры. Полимерами называются высокомолекулярные соединения, состоящие из цепочечного соединения молекул, длина которых достигает нескольких микрон.
Молекулы полимеров состоят из большого числа (до десятка тысяч) одинаковых звеньев, мономеров, представляющих группу из небольшого числа атомов. Полимеры получаются с помощью полимеризации или поликонденсации. К полимерам можно отнести многие органические вещества - крахмал, клетчатка, белок, каучук и другие, а также искусственные - полиэтилен, полистирол, плексиглас и др.
При обычной температуре полимеры могут являться твердыми телами или жидкостями. Твердые полимеры могут иметь как кристаллическое, так и аморфное строение. Они имеют исключительно благоприятные механические свойства (прочность и эластичность), которые связаны с их строением.
Полимеры легко обрабатываются путем давления (спрессовывания). Они применяются для изготовления медицинских инструментов, протезов кровеносных сосудов, клапанов сердца и т.д. Жидкие полимеры используются в качестве заменителя плазмы.
