- •С.П. Серегин,
- •«Биофизика и основы взаимодействия физических полей с биообъектами»
- •Раздел 2. Биофизика сложных систем 238
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография 276
- •Глава 13. Речеобразующая система человека 302
- •Глава 14. Моделирование биофизических процессов 326
- •Предисловие
- •Введение
- •Лекция 1. Общая биофизика. Биофизические процессы, протекающие в организме
- •Механические свойства биологических тканей
- •1.1. Молекулярная структура твердых тел, полимеров и жидких кристаллов
- •1.2. Механические свойства мышц и костного аппарата. Закон Фанга
- •1.3. Механические свойства сосудистой стенки
- •Вопросы для самопроверки
- •Типовые тесты текущего контроля
- •Задачи для закрепления изучаемого материала
- •Лекция 2. Термодинамика биологических сред
- •2.1. Основные термодинамические понятия и величины. Первое начало термодинамики
- •2.1.1. Понятия обратимых и необратимых процессов
- •2.1.2. Внутренняя энергия систем
- •2.2. Понятие теплоемкости. Применение первого начала термодинамики к газовым законам
- •2.2.1. Изохорический процесс
- •2.2.2. Изобарический процесс
- •2.2.3. Изотермический процесс
- •2.2.4. Адиабатический процесс
- •2.3. Применение первого начала термодинамики к биологическим процессам. Физические основы терморегуляции организма
- •2.3.1. Теплопродукция организма
- •2.4. Перенос теплоты в живых организмах. Термометрия
- •2.5. Понятие энтропии. Второе начало термодинамики
- •2.5.1. Круговые процессы
- •2.5.2. Цикл Карно
- •2.5.3. Энтропия
- •2.6. Статистическое содержание второго начала термодинамики
- •2.7. Термодинамические потенциалы
- •2.8. Открытые термодинамические системы. Уравнения Пригожина. Стационарные состояния открытой системы
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Типовые тесты текущего контроля.
- •Лекция 3. Молекулярная биофизика
- •3.1. Белковые молекулы. Структура белка
- •3.2. Нуклеиновые кислоты
- •3.3. Биосинтез белка
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Лекция 4. Физические свойства клеток
- •4.1. Строение и функции клеток и клеточных структур
- •4.2. Органеллы клеток
- •4.3. Строение ядра
- •4.4. Мембрана клетки как сферический конденсатор
- •4.5. Физико-химические методы исследования клеточных мембран
- •4.5.1. Электронная микроскопия
- •4.5.2. Рентгеноструктурный анализ
- •4.5.3. Поляриметрия
- •4.5.4. Электронный парамагнитный резонанс
- •4.5.5. Ядерный магнитный резонанс
- •4.5.6. Физическая характеристика клеточных мембран. Искусственные мембраны
- •4.6. Проницаемость клеточной мембраны
- •4.6.1. Пассивный транспорт веществ
- •4.6.2. Активный транспорт веществ в клетках
- •4.6.3. Опыт Уссинга. Ионные каналы
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Задачи для самопроверки
- •Лекция 5. Электрические явления в клетках и тканях
- •5.1. Виды биопотенциалов. Их природа. Понятие двойного электрического слоя. Дзета-потенциал
- •5.2. Определение поверхности электрического заряда эритроцитов
- •5.3. Мембранные потенциалы. Потенциал покоя и действия. Их регистрация
- •5.4. Регистрация биопотенциалов
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Лекция 6. Специальные методы, используемые для диагностики
- •6.1 Рентгеновские лучи
- •6.2. Взаимодействие рентгеновского излучения с веществами
- •6.3. Рентгеновская компьютерная томография (ркт)
- •6.4. Ангиография
- •6.5. Магнитно-резонансная томография (мрт)
- •6.6. Магнитокардиография
- •6.7. Радионуклидная диагностика
- •6.8. Действие радиации на человека
- •Вопросы для самопроверки
- •Лекция7. Биоакустические процессы
- •7.1. Характеристика звука. Его восприятие. Строение слухового анализатора
- •7.2. Биофизика инфразвука
- •7.3. Получение, распространение и регистрация ультразвука
- •7.4. Звуковое давление и акустическая энергия
- •7.5. Взаимодействие ультразвука с веществом
- •Рассмотрим поглощение ультразвуковых волн.
- •7.6. Ультразвуковые исследования (узи)
- •Вопросы для самопроверки
- •Лекция 8. Фотобиологические процессы. Биофизика зрительного восприятия
- •8.1. Процесс поглощения света
- •8.2. Зрительный аппарат человека
- •8.3. Спектроскопия
- •8.4. Термография
- •8.5. Люминисценция. Миграция энергии
- •Вопросы для самопроверки
- •Лекция 9. Индуцированное излучение. Его взаимодействие с биообъектами
- •9.1. Квантовые генераторы
- •9.2. Влияние лазерного излучения на биообъекты
- •9.3. Терапевтические лазерные приборы
- •Вопросы для самопроверки
- •Раздел 2. Биофизика сложных систем лекция10. Основы гемодинамики и биореологии
- •10.1. Вопросы биореологии
- •10.2. Гемодинамика крови. Уравнение Пуазейля и Бернулли
- •10.2.1. Уравнение Пуазейля
- •10.2.2. Уравнение Бернулли
- •10.3. Физические закономерности движения крови в сосудистой системе. Пульсовая волна
- •10.4. Клинические методы определения вязкости крови
- •Вопросы для самопроверки
- •Задачи для закрепления изучаемого материала
- •Лекция 11. Электропроводность биологических тканей. Импеданс
- •11.1. Электропроводность клеток и тканей для постоянного электрического тока. Лекарственный электрофорез
- •11.2. Электропроводность клеток и тканей для переменного электрического тока
- •11.3. Реография
- •11.4. Измерение электропроводности в медицинских и биологических исследованиях
- •Вопросы для самопроверки
- •Тесты текущего контроля
- •Глава 12. Электрическая активность органов и тканей. Электрокардиография
- •12.1. Теория Эйнтховена
- •12.2. Понятие токового диполя. Кардиография
- •12.3. Аппараты для электрографии
- •12.4. Биопотенциалы головного мозга. Электроэнцефалография
- •12.5. Миография и кожно–гальванический потенциал
- •12.6. Электростимуляция. Закон Лапика и Дюбуа-Реймона
- •Вопросы и задачи для самопроверки
- •Глава 13. Речеобразующая система человека
- •13.1. Механизм речеобразования
- •13.2. Акустическая фонетика
- •13.3. Акустическая теория речеобразования
- •13.3.1. Распространение звуков
- •13.3.2. Возбуждение звуков в голосовом тракте
- •13.3.3. Модели сигнала, основанные на акустической теории
- •Вопросы для самопроверки
- •Глава 14. Моделирование биофизических процессов
- •14.1. Виды моделей. Фармакокинетическая модель
- •14.2. Модель кровотока при локальном сужении сосудов
- •14.3 Движение крови по эластичным сосудам. Модель Франко
- •Вопросы для самоконтроля
- •Тесты текущего контроля
- •Заключение
- •Библиографический список
7.4. Звуковое давление и акустическая энергия
Акустические колебания, распространяясь в среде, создают добавочное давление к среднему, которое имеется в этой среде. Изменение давления в любой точке среды можно записать как
. (7.14)
Давление измеряется в барах (1 бар=1·105 Па) или атмосферах (1 атм=1,01325·105 Па).
Таким образом, звуковым давлением, или акустическим, называется добавочное давление, которое образуется в участках сгущения частиц акустической волны. Звуковое давление зависит от скорости колебаний частиц среды.
, (7.15)
где
;
;
- плотность среды; с - скорость волны в среде; ρс - часто называют удельным акустическим импедансом;
, (7.16)
где
.
Для плоской волны ρс называют волновым сопротивлением, которое определяет условие отражения и преломления ультразвуковых волн на границе раздела двух сред.
Затухание ультразвука определяется не только его поглощением, но и отражением на границе двух сред, которое характеризуется акустическим сопротивлением. Этот факт имеет большое значение при распространении ультразвука в живых организмах, ткани которых обладают самым различным акустическим сопротивлением (мышца, надкостница, кость). На границе воздух-ткань происходит почти полное отражение ультразвука. Это создает трудности при ультразвуковой терапии. Слой воздуха всего в 0,01 мм между вибратором и кожей является непреодолимым препятствием для ультразвука. В качестве контактных веществ обычно используют вазелиновое масло, глицерин, ланолин.
Для получения ультразвука используют механические и электромеханические генераторы. К механическим генераторам относят газоструйные излучатели и сирены, которые создают ультразвук частотой 500 кГц. К электрическим относятся пьезопреобразователи и магнитострикционные преобразователи, дающие частоту 100 кГц.
Для медицинских целей используют генераторы мощностью 10-20 Вт.
7.5. Взаимодействие ультразвука с веществом
Звуковая волна, распространясь в среде, несет с собой определенную энергию. Количество энергии, переносимое звуковой волной за 1 секунду через площадку 1 см2 перпендикулярно к направлению распространения, называется силой звука или интенсивностью. Для плоской бегущей волны интенсивность определяется как:
. (7.17)
Учитывая формулы (6.4) и (6.15), получим
.
Силу звука измеряют в ваттах на квадратный сантиметр (1 Вт/см2=107 эрг/(с·см2)).
Из формулы (7.17) следует
или
. (7.18)
Акустическое давление в воде, облученной ультразвуком ν=500 кГц и I=108 эрг/(с·см2) будет равно 5,4 атм.
Так
как
,
то можно рассчитать амплитуду колебаний
см. (7.19)
Найдем амплитуду ускоренных частиц:
см/с2. (7.20)
Таким образом, максимальное ускорение колеблющихся частиц в 100000 раз больше, чем при действии силы тяжести. При распространении ультразвука возникают растягивающие силы, которые могут привести к разрыву жидкости и образованию пузырьков, заполненных паром этой жидкости. Такое явление называется кавитацией. Для чистой воды порог кавитации Pk=1,5·108 Па=1500 атм. Захлопывание кавитационных пузырьков сопровождается сильным нагревом их содержимого. Вещество в кавитационной области подвергается сильным воздействиям.
При интенсивности меньше 3000 Вт/м2 в жидкости могут возникать ультразвуковые потоки или "звуковой ветер", скорость которого достигает десятков метров в секунду.
Если в жидкости находятся частицы, которые обладают противоположными электрическими зарядами и разными массами, то в ультразвуковой волне эти частицы будут отклоняться от положения равновесия, и в поле волны возникнет переменная разность потенциалов - эффект Дебая. При больших разницах в массах потенциал Дебая может достигнуть десятков и сотен мегавольт. В УЗ-поле могут протекать как окислительные, так и восстановительные процессы. Одной из характерных реакций является расщепления молекул воды на радикалы H+ и ОН- с последующим образованием перекиси водорода Н2О2.
