Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Linal_ekzamen.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.87 Mб
Скачать

31 Вопрос.

Угол между плоскостями. Условие параллельности и перпендикулярности плоскостей.

1)Определение.

 Двугранный угол между плоскостями равен углу образованному нормальными векторами этих плоскостей.

Определение.

 Двугранный угол между плоскостями равен углу образованному прямыми l1 и l2, лежащими в соответствующих плоскостях и перпендикулярными линии пересечения плоскостей.

Формула для вычисления угла между плоскостями

Если заданы уравнения плоскостей A1x + B1y + C1z + D1 = 0 и A2x + B2y + C2z + D2 = 0, то угол между плоскостями можно найти, используя следующую формулу

cos α = 

|A1·A2 + B1·B2 + C1·C2|

√A12 + B12 + C12√A22 + B22 + C22

2) Условия перпендикулярности 2х плоскостей. Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно,  или  .

Таким образом,  .

3) Условия параллельности 2х плоскостейДве плоскости α1 и α2 параллельны тогда и только тогда, когда их нормальные векторы   и   параллельны, а значит 

32 Вопрос.

Уравнение прямой в пространстве. Различные способы задания прямой в пространстве. Угол между плоскостям. Взаимное расположение прямых и плоскостей.

1)Уравнение прямой на плоскости в прямоугольной системе координат O(x;y)представляет собой линейное уравнение с двумя переменными x и y, которому удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точек. С прямой в трехмерном пространстве дело обстоит немного иначе – не существует линейного уравнения с тремя переменными xy и z, которому бы удовлетворяли только координаты точек прямой, заданной в прямоугольной системе координат O(x;y;z). Действительно, уравнение вида  , где xy и z – переменные, а ABC и D – некоторые действительные числа, причем АВ и Содновременно не равны нулю, представляет собой общее уравнение плоскости. Тогда встает вопрос: «Каким же образом можно описать прямую линию в прямоугольной системе координат O(x;y;z)

2)Если в трехмерном пространстве введена прямоугольная система координат и задана прямая с помощью указания координат двух ее точек, то мы имеем возможность составить уравнение прямой, проходящей через две заданные точки.

Второй способ задания прямой в пространстве основан на теореме: через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и причем только одна.

Следующий способ задания прямой в пространстве основан на аксиоме стереометрии: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Таким образом, задав две пересекающиеся плоскости, мы однозначно определим прямую в пространстве.

Смотрите также статью уравнения прямой в пространстве - уравнения двух пересекающихся плоскостей.

Способ задания прямой в пространстве следует из теоремы (ее доказательство Вы можете найти в книгах, указанных в конце этой статьи): если задана плоскость и не лежащая в ней точка, то существует единственная прямая, проходящая через эту точку и перпендикулярная к заданной плоскости.

Таким образом, чтобы определить прямую, можно задать плоскость, которой искомая прямая перпендикулярна, и точку, через которую эта прямая проходит.

Если прямая задана таким способом относительно введенной прямоугольной системы координат, то будет полезно владеть материалом статьи уравнения прямой, проходящей через заданную точку перпендикулярно к заданной плоскости.

3)Во-первых, две прямые могут совпадать, то есть, иметь бесконечно много общих точек (по крайней мере две общие точки).

Во-вторых, две прямые в пространстве могут пересекаться, то есть, иметь одну общую точку. В этом случае эти две прямые лежат в некоторой плоскости трехмерного пространства. Если две прямые в пространстве пересекаются, то мы приходим к понятию угла между пересекающимися прямыми.

В-третьих, две прямые в пространстве могут быть параллельными. В этом случае они лежат в одной плоскости и не имеют общих точек. Рекомендуем к изучению статью параллельные прямые, параллельность прямых.

Две прямые в трехмерном пространстве могут быть скрещивающимися. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. Такое взаимное расположение двух прямых в пространстве приводит нас к понятию угла между скрещивающимися прямыми.

Особое практическое значение имеет случай, когда угол между пересекающимися или скрещивающимися прямыми в трехмерном пространстве равен девяноста градусам. Такие прямые называют перпендикулярными (смотрите статью перпендикулярные прямые, перпендикулярность прямых).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]