- •Часть I.
- •Часть I. Дифференциальные уравнения математической физики. Изд-во сПбГу, 2014,….С.
- •Оглавление
- •Введение
- •§ 1. Скалярные поля
- •Градиент скалярной величины
- •§ 2. Векторные поля
- •Поток вектора
- •Дивергенция вектора
- •Циркуляция и ротор векторного поля
- •§ 3. Оператор Гамильтона и дифференциальные операторы второго порядка
- •§1. Уравнение малых поперечных колебаний струны
- •Начальные условия
- •§ 2. Случай ограниченной струны.
- •§ 3. Решение задачи Коши
- •Частные случаи
- •Графическая интерпретация
- •§ 4. Метод характеристик
- •§ 5. Случай полубесконечной струны
- •§ 6. Метод разделения переменных для уравнения колебаний ограниченной струны.
- •§ 7. Вынужденные колебания струны, закрепленной на концах
- •§ 8 . Продольные колебания однородного стержня
- •§ 9. Случай ненулевых граничных условий.
- •§ 10. Телеграфное уравнение.
- •§ 11. Общая схема метода разделения переменных для одномерных гиперболических уравнений
- •§ 12. Задача Гурса
- •§ 13. Теорема единственности решения краевых задач для одномерного волнового уравнения
- •§ 1. Волны в трехмерном пространстве
- •§ 2. Двумерное волновое уравнение
- •§ 3. Теорема единственности для двумерного волнового уравнения
- •§ 4. Трехмерное неоднородное волновое уравнение
- •§ 5. Точечный источник
- •§ 6. Уравнения малых поперечных колебаний мембраны.
- •§ 7. Граничные условия
- •§ 8. Решение задачи о колебаниях круглой мембраны
- •§ 1 . Задача Коши. Характеристики.
- •§ 2. Слабый разрыв. Фронт волны
- •§ 1. Уравнение теплопроводности для однородного стержня.
- •§ 2. Граничные условия и их физический смысл.
- •§ 3. Применение метода разделения переменных
- •§4. Задача о распространении тепла в изотропном твердом теле.
- •§ 5. Уравнение диффузии
- •§ 6. Принцип максимального значения
- •§ 7. Теорема единственности для неоднородного уравнения теплопроводности.
- •§ 1. Уравнения Пуассона и Лапласа
- •§ 2. Оператор Лапласа в криволинейных координатах
- •§ 3. Фундаментальное решение уравнения Лапласа
- •§ 4. Гармонические функции.
- •§ 5. Формулы Грина
- •§ 6. Свойства гармонических функций
- •§ 7. Единственность решения краевых задач
- •§ 8. Изолированные особые точки
- •§ 9. Регулярность гармонических функций трех переменных на бесконечности
- •§10. Единственность решения внешних краевых задач
- •§ 11. Решение задачи Дирихле для уравнения Лапласа методом разделения переменных. Интегральная формула Пуассона.
- •§ 12. Функция источника для уравнения Лапласа
- •§ 12. Решение задачи Дирихле в круге для уравнения Пуассона.
- •§ 1. Объемный потенциал
- •§ 2. Плоская задача. Логарифмический потенциал.
- •§ 3. Потенциалы простого и двойного слоя
- •§ 5. Поверхности Ляпунова
- •§ 6. Разрыв потенциала двойного слоя
- •§ 7. Поведение потенциала простого слоя при переходе через границу
- •§ 8. Применение поверхностных интегралов к решению краевых задач
- •§ 9. Задача Дирихле для круга
- •§ 1. Связь уравнения Гельмгольца с уравнениями гиперболического и параболического типа
- •§ 2. Внутренняя краевая задача
- •§ 3. Сферически симметричное решение уравнения Гельмгольца в ограниченной области
- •§ 4. Сферически симметричное решение уравнения Гельмгольца для неограниченной области
- •§ 1. Системы уравнений теории упругости
- •§ 2. Скалярный и векторный потенциалы
- •§ 1. Система уравнений Лоренца-Максвелла
- •§ 2. Усредненные уравнения Лоренца-Максвелла
- •§ 1. Течение идеальной жидкости
- •§ 2. Течение вязкой жидкости
- •Где выражение для a и определяет степенной вид неньютоновской жидкости
- •§ 3. Постановка граничных условий
- •§ 4. Уравнения газодинамики
- •§ 5. Закон сохранения энергии
- •§ 6. Звуковые колебания в жидкости и газе
§ 1. Скалярные поля
Цель этой короткой главы – лишь напомнить некоторые понятия, результаты, их математические формулировки и физический смысл, которые излагаются в курсе математического анализа, и которые потребуются нам в дальнейшем при изложении материала. Это касается понятий скалярного и векторного полей, а также дифференциальных операторов, применяемых к этим полям.
Наряду с понятием скалярной и векторной физической величины в математической физике часто пользуются понятиями скалярного поля и векторного поля.
Если
в каждой точке М
области D
задано значение скалярной величины u,
то эта величина является скалярной
функцией точки, т.е.
.
В этом случае говорят, что в области D
задано скалярное поле.
Для скалярного поля вводится понятие поверхности уровня, которая определяется как геометрическое место точек, в которых функция u имеет постоянное значение. В трехмерном случае это можно записать как
.
Градиент скалярной величины
Наряду
с понятием поверхности уровня вводится
понятие градиента,
т.е. векторной величины, направление
которой совпадает с направлением нормали
к поверхности уровня скалярного поля
(Рис. 1). Проекциями этого вектора на
координатные оси служат частные
производные от функции
,
т. е. :
.
(1)
Рис. 1. К понятию градиента скалярной функции
Таким образом, градиент это вектор, который представляет собой результат применения некоего дифференциального оператора к скалярной функции.
Если векторное поле А в каждой точке М может быть задано как градиент некоторой функции U, т. е. А= grad U, то такое поле называют потенциальным, а функцию U – потенциалом.
Физический смысл градиента заключается в том, что его направление совпадает с направлением наибольшего возрастания скалярной величины. Так градиент температуры направлен к источнику тепла, а градиент потенциала электростатического поля к одиночному заряду и т.д. Модуль градиента характеризует степень возрастания скалярной величины.
§ 2. Векторные поля
Если в каждой точке М области D задан определенный вектор А(М), то говорят, что в области D задано векторное поле. Примерами векторных физических полей служат гравитационное поле, электромагнитное поле, поле скоростей текущей жидкости и т.д.
Для векторного поля вводят понятие векторной линии, т.е. линии, направление касательной к которой в каждой точке совпадает с направлением вектора А(М) (Рис. 2).
Е
сли
векторное поле определяется функцией
,
(2)
то векторная линия в пространстве задается следующей системой дифференциальных уравнений
Рис.
2. К понятию векторной линии
Поток вектора
Важным понятием для векторного поля является поток вектора. Если векторное поле задано выражением (2), то для всякой поверхности S с нормалью n можно записать интеграл по этой поверхности от проекции вектора A на нормаль n, а именно
(4)
где α, β, γ – направляющие косинусы нормали. Формула (4) и определяет поток вектора A через поверхность S.
Физический смысл потока нагляднее всего иллюстрируется на примере потока жидкости, который есть не что иное, как объём жидкости, пересекающий единицу поверхности в единицу времени. Тогда поток жидкости через площадку dS будет равен объему параллелепипеда с ребром, равным скорости потока V и высотой, равной Vn (см. Рис. 3), а поток жидкости через всю поверхность S будет соответственно равен
(5)
Рис. 3. К физическому смыслу потока вектора
