- •Часть I.
- •Часть I. Дифференциальные уравнения математической физики. Изд-во сПбГу, 2014,….С.
- •Оглавление
- •Введение
- •§ 1. Скалярные поля
- •Градиент скалярной величины
- •§ 2. Векторные поля
- •Поток вектора
- •Дивергенция вектора
- •Циркуляция и ротор векторного поля
- •§ 3. Оператор Гамильтона и дифференциальные операторы второго порядка
- •§1. Уравнение малых поперечных колебаний струны
- •Начальные условия
- •§ 2. Случай ограниченной струны.
- •§ 3. Решение задачи Коши
- •Частные случаи
- •Графическая интерпретация
- •§ 4. Метод характеристик
- •§ 5. Случай полубесконечной струны
- •§ 6. Метод разделения переменных для уравнения колебаний ограниченной струны.
- •§ 7. Вынужденные колебания струны, закрепленной на концах
- •§ 8 . Продольные колебания однородного стержня
- •§ 9. Случай ненулевых граничных условий.
- •§ 10. Телеграфное уравнение.
- •§ 11. Общая схема метода разделения переменных для одномерных гиперболических уравнений
- •§ 12. Задача Гурса
- •§ 13. Теорема единственности решения краевых задач для одномерного волнового уравнения
- •§ 1. Волны в трехмерном пространстве
- •§ 2. Двумерное волновое уравнение
- •§ 3. Теорема единственности для двумерного волнового уравнения
- •§ 4. Трехмерное неоднородное волновое уравнение
- •§ 5. Точечный источник
- •§ 6. Уравнения малых поперечных колебаний мембраны.
- •§ 7. Граничные условия
- •§ 8. Решение задачи о колебаниях круглой мембраны
- •§ 1 . Задача Коши. Характеристики.
- •§ 2. Слабый разрыв. Фронт волны
- •§ 1. Уравнение теплопроводности для однородного стержня.
- •§ 2. Граничные условия и их физический смысл.
- •§ 3. Применение метода разделения переменных
- •§4. Задача о распространении тепла в изотропном твердом теле.
- •§ 5. Уравнение диффузии
- •§ 6. Принцип максимального значения
- •§ 7. Теорема единственности для неоднородного уравнения теплопроводности.
- •§ 1. Уравнения Пуассона и Лапласа
- •§ 2. Оператор Лапласа в криволинейных координатах
- •§ 3. Фундаментальное решение уравнения Лапласа
- •§ 4. Гармонические функции.
- •§ 5. Формулы Грина
- •§ 6. Свойства гармонических функций
- •§ 7. Единственность решения краевых задач
- •§ 8. Изолированные особые точки
- •§ 9. Регулярность гармонических функций трех переменных на бесконечности
- •§10. Единственность решения внешних краевых задач
- •§ 11. Решение задачи Дирихле для уравнения Лапласа методом разделения переменных. Интегральная формула Пуассона.
- •§ 12. Функция источника для уравнения Лапласа
- •§ 12. Решение задачи Дирихле в круге для уравнения Пуассона.
- •§ 1. Объемный потенциал
- •§ 2. Плоская задача. Логарифмический потенциал.
- •§ 3. Потенциалы простого и двойного слоя
- •§ 5. Поверхности Ляпунова
- •§ 6. Разрыв потенциала двойного слоя
- •§ 7. Поведение потенциала простого слоя при переходе через границу
- •§ 8. Применение поверхностных интегралов к решению краевых задач
- •§ 9. Задача Дирихле для круга
- •§ 1. Связь уравнения Гельмгольца с уравнениями гиперболического и параболического типа
- •§ 2. Внутренняя краевая задача
- •§ 3. Сферически симметричное решение уравнения Гельмгольца в ограниченной области
- •§ 4. Сферически симметричное решение уравнения Гельмгольца для неограниченной области
- •§ 1. Системы уравнений теории упругости
- •§ 2. Скалярный и векторный потенциалы
- •§ 1. Система уравнений Лоренца-Максвелла
- •§ 2. Усредненные уравнения Лоренца-Максвелла
- •§ 1. Течение идеальной жидкости
- •§ 2. Течение вязкой жидкости
- •Где выражение для a и определяет степенной вид неньютоновской жидкости
- •§ 3. Постановка граничных условий
- •§ 4. Уравнения газодинамики
- •§ 5. Закон сохранения энергии
- •§ 6. Звуковые колебания в жидкости и газе
§ 4. Трехмерное неоднородное волновое уравнение
Рассмотрим трехмерное неоднородное волновое уравнение
(28)
и будем искать его решение, удовлетворяющее нулевым начальным условиям
(29)
Это
означает, что в исходном состоянии
описываемый объект не был деформирован
и покоился. В этом случае деформации
этого объекта в последующие моменты
времени будут определяться только
внешней силой
и механическими свойствами объекта.
Чтобы решить поставленную задачу нужно решить однородное уравнение
(30)
но
с ненулевой начальной скоростью, равной
внешней силе из уравнения (28) в некоторый
момент времени τ :
:
(31)
При этом τ становится параметром задачи. Иными словами воздействие внешней силы на объект заменяется на сообщение точкам объекта соответствующей скорости в некоторый
Теперь
для решения задачи можно воспользоваться
формулой (12) из §1, заменив в ней t
на
,
тогда получим
?
(32)
Теперь
покажем, что функция
,
определенная формулой
,
(33)
является решением неоднородного уравнения (28) при нулевых начальных условиях (29). Действительно, из формулы (33) находим
(34)
Дифференцируя теперь выражение (33) по времени, получим
,
(35)
причем
внеинтегральный член при
равен
нулю в силу первого начального условия
(31), т.е.
(36)
Дифференцируя ещё раз по t, будем иметь
,
(37)
причем здесь внеинтегральный член при в силу первого начального условия (31) равен , т.е.
(38)
Поскольку функция v удовлетворяет уравнению (30), то (38) можно переписать следующим образом
,
а в силу (33) входящий в это выражение интеграл есть Δu. В итоге получим
,
т.е. функция u удовлетворяет исходному уравнению (28). При этом начальные условия (29) также выполнены в силу (33) и (36).
Подставив
в формулу (34) вместо функции
её
выражение (32), получим
Затем,
если введем вместо τ
новую переменную интегрирования
,
то получим
Вводя новые координаты
И
учитывая, что
,
получим
,
и выражение для окончательно запишется в виде
(39)
где Dat – шар радиуса at с центром в точке (x, y, z).
Выражение (39) называют запаздывающим потенциалом, так как при выполнения интегрирования функция g берется не в рассматриваемый момент времени t, а в момент, наступивший раньше на промежуток времени r/a, необходимый для того, чтобы возмущение, распространяясь со скоростью a от точки (ξ, η, ζ ), дошло до точки (x, y, z ).
Аналогичным образом мы можем получить решение для двухмерного волнового уравнения
(40)
с нулевыми начальными данными
(41)
Это решение имеет вид
(42)
где
