- •Конспект лекций
- •Содержание
- •Тема 12. Параллельный колебательный контур 75
- •Тема 13. Связанные колебательные контуры 83
- •Лекция № 1 Введение
- •Библиографический список
- •Тема 1. Основные понятия теории электрических цепей
- •1.1. Электрическая цепь
- •1.2. Электрический ток
- •1.3. Электрическое напряжение
- •1.4. Электродвижущая сила
- •1.5. Электрическая энергия и мощность
- •1.6. Электрическая схема
- •Лекция № 2 Тема 2. Идеализированные элементы электрической цепи
- •2.1. Сопротивление
- •2.2. Ёмкость
- •2.3. Индуктивность
- •2.4. Схемы замещения реальных электрических элементов
- •2.5. Идеальный источник напряжения
- •2.6. Идеальный источник тока
- •2.7. Схемы замещения реальных источников электрической энергии
- •Лекция № 3 Тема 3. Уравнения электрического равновесия цепи
- •3.1. Основные определения, относящиеся к топологии электрических цепей
- •3.2. Топологический граф электрических цепей
- •3.3. Компонентные и топологические уравнения электрической цепи
- •3.4. Система уравнений электрического равновесия цепи
- •Лекция № 4 Тема 4. Расчёт цепей методом комплексных амплитуд
- •4.1. Комплексные числа и действия над ними
- •4.2. Гармоническая функция времени и ее параметры»
- •4.3. Комплексное изображение гармонической функции
- •Лекция № 5
- •4.4. Понятие о методе комплексных амплитуд
- •4.5. Комплексные сопротивление и проводимость цепи при гармоническом воздействии
- •4.6. Омическое сопротивление при гармоническом воздействии
- •4.7. Ёмкость при гармоническом воздействии
- •Лекция № 6
- •4.8. Индуктивность при гармоническом воздействии
- •4.9. Закон Ома в комплексной форме для участка цепи
- •4.10. Первый и второй законы Кирхгофа в комплексной форме
- •4.11. Этапы расчёта электрических цепей методом комплексных амплитуд
- •Лекция № 7 Тема 5. Энергетические процессы в электрических цепях при гармоническом воздействии
- •5.1. Мгновенная и полная мощность цепи при гармоническом воздействии
- •5.2. Комплексная мощность цепи при гармоническом воздействии
- •5.3. Согласование нагрузки с источником энергии
- •Тема 6. Анализ простейших электрических цепей при гармоническом воздействии
- •6.1. Последовательная rl-цепь при гармоническом воздействии
- •Лекция № 8
- •6.2. Последовательная rc-цепь при гармоническом воздействии
- •6.3. Параллельная rl-цепь при гармоническом воздействии
- •6.4. Параллельная rс-цепь при гармоническом воздействии
- •Тема 7. Преобразования электрических цепей
- •7.1. Преобразование последовательной цепи в параллельную и обратно
- •7.2. Комплексные схемы замещения источников напряжения и тока
- •Тема 8. Методы расчёта сложных электрических цепей
- •8.1. Метод контурных токов
- •Лекция № 9
- •8.2. Метод узловых напряжений
- •8.3. Метод наложения
- •8.4. Метод эквивалентного источника
- •Лекция № 10 Тема 9. Индуктивно связанные электрические цепи
- •9.1. Понятие взаимной индукции и взаимной индуктивности
- •9.3. Коэффициент связи между катушками индуктивности
- •9.4. Эквивалентное преобразование участков цепи, содержащих индуктивно связанные катушки
- •Лекция № 11
- •9.5. Линейный трансформатор без сердечника и его характеристики
- •Тема 10. Комплексные характеристики электрических цепей
- •10.1. Понятие о комплексных характеристиках цепи
- •10.2. Комплексные характеристики простейших rl- и rc-четырёхполюсников с одним реактивным элементом
- •Лекция № 12
- •10.3. Понятие о колебательных электрических цепях и резонансе
- •Тема 11. Последовательный колебательный контур
- •11.1. Резонансная частота и волновое сопротивление последовательного контура
- •11.2. Энергетические соотношения в последовательном контуре
- •11.3. Комплексное сопротивление последовательного контура
- •Лекция № 13
- •11.4. Виды расстроек и полоса пропускания последовательного контура
- •11.5. Комплексный коэффициент передачи последовательного контура
- •11.6. Влияние сопротивления источника энергии и нагрузки на характеристики последовательного контура
- •Лекция № 14 Тема 12. Параллельный колебательный контур
- •12.1. Виды параллельных контуров и их обобщенная схема
- •12.2. Параметры и эквивалентная схема параллельного контура первого вида
- •12.3. Комплексное сопротивление параллельного контура первого вида
- •12.4. Комплексный коэффициент передачи параллельного контура первого вида
- •12.5. Влияние сопротивления источника тока и сопротивления нагрузки на характеристики параллельного контура первого вида
- •Лекция № 15
- •12.6. Характеристики параллельного контура второго вида
- •12.7. Характеристики параллельного контура третьего вида
- •Тема 13. Связанные колебательные контуры
- •13.1. Виды связанных контуров и их обобщённая схема
- •Лекция 16
- •13.2. Коэффициент связи и виды настройки связанных контуров
- •13.3. Амплитудно-частотная характеристика связанных контуров
- •Заключение
6.4. Параллельная rс-цепь при гармоническом воздействии
Рассмотрим параллельную
-цепь
(рис. 6.7, а) при гармоническом воздействии
(5.1).
Н
Рис. 6.7
— комплексные проводимости сопротивления
и ёмкости соответственно.
На основании первого закона Кирхгофа составим уравнение электрического равновесия цепи в комплексной форме
;
где
— комплексная проводимость параллельной
RC-цепи.
Запишем комплексную проводимость параллельной RC-цепи в показательной форме
,
где
и
—
модуль и аргумент комплексной проводимости
параллельной RC-цепи.
Векторная диаграмма комплексной
проводимости параллельной RC-цепи
показана на рис. 6.8, а. Поскольку аргумент
комплексной проводимости находится на
интервале
,
то проводимость имеет резистивно-ёмкостной
характер.
Используя закон Ома, найдем комплексное действующее значения тока цепи
,
где
и
— модуль и аргумент комплексного
действующего значения тока.
В
Рис. 6.8
Анализ простейшие электрических цепей при гармоническом воздействии, выполненный с помощью метода комплексных амплитуд, показал следующее.
1) Комплексные сопротивление и проводимость участка цепи, содержащего хотя бы один реактивный элемент, зависят не только от параметров элементов цепи и вида их соединения между собой, но и от частоты гармонического воздействия.
2) При известной частоте гармонического воздействия для определения временные функции напряжений и токов цепи достаточно найти комплексные амплитуды или комплексные действующие значения этих напряжений и токов.
3) Фазовый сдвиг между входным напряжением и входным током цепи равен аргументу комплексного сопротивления цепи.
Тема 7. Преобразования электрических цепей
Расчёт сложной электрической цепи может быть упрощен путём замены отдельных участков этой цепи участков эквивалентными схемами замещения, имеющими более простую топологию по сравнению с заменяемыми участками.
7.1. Преобразование последовательной цепи в параллельную и обратно
Условием эквивалентных пассивных линейных двухполюсников является равенство их комплексных сопротивлений и проводимостей.
Пусть заданы параметры
,
последовательной RL-цепи
(рис. 7.3, а) и требуется найти параметры
и
эквивалентной ей параллельной RL-цепи
(рис. 7.3, б).
а) б) а) б)
Рис. 7.3 Рис. 7.4
Определим комплексную проводимость последовательной RL-цепи
и комплексную проводимость параллельной цепи
.
Приравнивая вещественные и мнимые составляющие комплексных проводимостей последовательной и параллельной цепей, находим
;
.
Если заданы параметры
и
параллельной
RС-цепи (рис. 7.4,
а),. то она может быть аналогичным образом
преобразована в эквивалентную ей
последовательную RС-цепь
(рис. 7.4, б), параметры которой
определяются по формулам:
;
.
Таким же путём можно найти формулы для пересчёта параметров параллельной RL-цепи в последовательную, последовательной RC-цепи в параллельную и т.п.
Однако следует иметь в виду, что вышеприведенные эквивалентные преобразования применимы только для фиксированной частоты внешнего воздействия. Изменение частоты внешнего воздействия вызовет изменение значений параметров элементов эквивалентной цепи, поскольку частота входит в расчётные формулы.
