- •Конспект лекций
- •Содержание
- •Тема 12. Параллельный колебательный контур 75
- •Тема 13. Связанные колебательные контуры 83
- •Лекция № 1 Введение
- •Библиографический список
- •Тема 1. Основные понятия теории электрических цепей
- •1.1. Электрическая цепь
- •1.2. Электрический ток
- •1.3. Электрическое напряжение
- •1.4. Электродвижущая сила
- •1.5. Электрическая энергия и мощность
- •1.6. Электрическая схема
- •Лекция № 2 Тема 2. Идеализированные элементы электрической цепи
- •2.1. Сопротивление
- •2.2. Ёмкость
- •2.3. Индуктивность
- •2.4. Схемы замещения реальных электрических элементов
- •2.5. Идеальный источник напряжения
- •2.6. Идеальный источник тока
- •2.7. Схемы замещения реальных источников электрической энергии
- •Лекция № 3 Тема 3. Уравнения электрического равновесия цепи
- •3.1. Основные определения, относящиеся к топологии электрических цепей
- •3.2. Топологический граф электрических цепей
- •3.3. Компонентные и топологические уравнения электрической цепи
- •3.4. Система уравнений электрического равновесия цепи
- •Лекция № 4 Тема 4. Расчёт цепей методом комплексных амплитуд
- •4.1. Комплексные числа и действия над ними
- •4.2. Гармоническая функция времени и ее параметры»
- •4.3. Комплексное изображение гармонической функции
- •Лекция № 5
- •4.4. Понятие о методе комплексных амплитуд
- •4.5. Комплексные сопротивление и проводимость цепи при гармоническом воздействии
- •4.6. Омическое сопротивление при гармоническом воздействии
- •4.7. Ёмкость при гармоническом воздействии
- •Лекция № 6
- •4.8. Индуктивность при гармоническом воздействии
- •4.9. Закон Ома в комплексной форме для участка цепи
- •4.10. Первый и второй законы Кирхгофа в комплексной форме
- •4.11. Этапы расчёта электрических цепей методом комплексных амплитуд
- •Лекция № 7 Тема 5. Энергетические процессы в электрических цепях при гармоническом воздействии
- •5.1. Мгновенная и полная мощность цепи при гармоническом воздействии
- •5.2. Комплексная мощность цепи при гармоническом воздействии
- •5.3. Согласование нагрузки с источником энергии
- •Тема 6. Анализ простейших электрических цепей при гармоническом воздействии
- •6.1. Последовательная rl-цепь при гармоническом воздействии
- •Лекция № 8
- •6.2. Последовательная rc-цепь при гармоническом воздействии
- •6.3. Параллельная rl-цепь при гармоническом воздействии
- •6.4. Параллельная rс-цепь при гармоническом воздействии
- •Тема 7. Преобразования электрических цепей
- •7.1. Преобразование последовательной цепи в параллельную и обратно
- •7.2. Комплексные схемы замещения источников напряжения и тока
- •Тема 8. Методы расчёта сложных электрических цепей
- •8.1. Метод контурных токов
- •Лекция № 9
- •8.2. Метод узловых напряжений
- •8.3. Метод наложения
- •8.4. Метод эквивалентного источника
- •Лекция № 10 Тема 9. Индуктивно связанные электрические цепи
- •9.1. Понятие взаимной индукции и взаимной индуктивности
- •9.3. Коэффициент связи между катушками индуктивности
- •9.4. Эквивалентное преобразование участков цепи, содержащих индуктивно связанные катушки
- •Лекция № 11
- •9.5. Линейный трансформатор без сердечника и его характеристики
- •Тема 10. Комплексные характеристики электрических цепей
- •10.1. Понятие о комплексных характеристиках цепи
- •10.2. Комплексные характеристики простейших rl- и rc-четырёхполюсников с одним реактивным элементом
- •Лекция № 12
- •10.3. Понятие о колебательных электрических цепях и резонансе
- •Тема 11. Последовательный колебательный контур
- •11.1. Резонансная частота и волновое сопротивление последовательного контура
- •11.2. Энергетические соотношения в последовательном контуре
- •11.3. Комплексное сопротивление последовательного контура
- •Лекция № 13
- •11.4. Виды расстроек и полоса пропускания последовательного контура
- •11.5. Комплексный коэффициент передачи последовательного контура
- •11.6. Влияние сопротивления источника энергии и нагрузки на характеристики последовательного контура
- •Лекция № 14 Тема 12. Параллельный колебательный контур
- •12.1. Виды параллельных контуров и их обобщенная схема
- •12.2. Параметры и эквивалентная схема параллельного контура первого вида
- •12.3. Комплексное сопротивление параллельного контура первого вида
- •12.4. Комплексный коэффициент передачи параллельного контура первого вида
- •12.5. Влияние сопротивления источника тока и сопротивления нагрузки на характеристики параллельного контура первого вида
- •Лекция № 15
- •12.6. Характеристики параллельного контура второго вида
- •12.7. Характеристики параллельного контура третьего вида
- •Тема 13. Связанные колебательные контуры
- •13.1. Виды связанных контуров и их обобщённая схема
- •Лекция 16
- •13.2. Коэффициент связи и виды настройки связанных контуров
- •13.3. Амплитудно-частотная характеристика связанных контуров
- •Заключение
Тема 6. Анализ простейших электрических цепей при гармоническом воздействии
Проанализируем методом комплексных амплитуд простейшие электрические цепи, составленные путем последовательного и параллельного соединения двух идеализированных пассивных элементов при гармоническом воздействии в виде напряжения
. (6.1)
г
Рис. 6.1
— действующее значение, круговая частота
и начальная фаза напряжения.
6.1. Последовательная rl-цепь при гармоническом воздействии
Рассмотрим последовательную RL-цепь
(рис. 6.1, а). Заменяя в схеме (рис. 6.1)
сопротивление
и индуктивность
их комплексными схемами замещения
и
и переходя от вещественных функций тока
и напряжения
к комплексным действующим значениям
и
,
получаем комплексную схему замещения
(рис. 6.1, б).
Тогда на основании закона Ома для участка цепи (4.21) составляем в комплексной форме уравнение электрического равновесия цепи (рис. 6.1, б)
,
где
— комплексное сопротивление цепи в
алгебраической форме записи.
Преобразуем алгебраическую форму записи комплексного сопротивления RL-цепи в показательную
,
где
и
—
модуль и аргумент комплексного
сопротивления цепи.
К
Рис. 6.2
и
(рис. 6.2, а).
При конечных значениях
,
и
аргумент комплексного сопротивления
последовательной RL-цепи
имеет положительное значение и находится
на интервале
,
что соответствует резистивно-индуктивному
характеру сопротивления цепи. При
рассмотрении Закона Ома в комплексной
форме было показано, что аргумент
комплексного сопротивления участка
цепи равен фазовому сдвигу фаз между
напряжением и током цепи. Откуда следует,
что напряжение последовательной RL-цепи
опережает по фазе её ток на угол
.
Используя закон Ома в комплексной форме, найдем комплексное действующее значение тока цепи
.
где
и
— модуль и аргумент комплексного
действующего значения тока.
Переходя от изображения тока к его оригиналу, получаем
,
где
— амплитуда тока.
Таким образом, при известной частоте временная функция тока полностью определяются модулем и аргументом комплексного действующего значения этого тока. Поэтому при расчёте цепи достаточно найти только комплексные амплитуды или комплексные действующие значения токов и напряжений.
Векторная диаграмма комплексных тока
и напряжений RL-цепи показана на рис.
6.2, б. Поскольку напряжение на сопротивлении
совпадает по фазе с током, то вектор
совпадает по направлению с вектором
.
Так как напряжение на индуктивности
опережает по фазе ток на
,
то вектор
повернут относительно вектора
на угол
против часовой стрелки. В результате,
вектор суммарного напряжения
повернут относительно вектор тока
против
часовой стрелки на угол
,
равный аргументу комплексного
сопротивления цепи. Откуда следует, что
напряжение опережает по фазе ток на
угол
.
Из рис. 6.2 видно, что «треугольник
напряжений», образованный векторами
,
и
(рис. 6.2, б), подобен «треугольнику
сопротивлений», образованному векторами
,
и
(рис. 6.2, а).
В прямоугольном «треугольнике напряжений» (рис. 6.2, б) действующие значения напряжений на входе цепи является гипотенузой, которая может быть выражена через катеты, представляющие собой действующие значения напряжений на элементах цепи
.
