- •Конспект лекций
- •Содержание
- •Тема 12. Параллельный колебательный контур 75
- •Тема 13. Связанные колебательные контуры 83
- •Лекция № 1 Введение
- •Библиографический список
- •Тема 1. Основные понятия теории электрических цепей
- •1.1. Электрическая цепь
- •1.2. Электрический ток
- •1.3. Электрическое напряжение
- •1.4. Электродвижущая сила
- •1.5. Электрическая энергия и мощность
- •1.6. Электрическая схема
- •Лекция № 2 Тема 2. Идеализированные элементы электрической цепи
- •2.1. Сопротивление
- •2.2. Ёмкость
- •2.3. Индуктивность
- •2.4. Схемы замещения реальных электрических элементов
- •2.5. Идеальный источник напряжения
- •2.6. Идеальный источник тока
- •2.7. Схемы замещения реальных источников электрической энергии
- •Лекция № 3 Тема 3. Уравнения электрического равновесия цепи
- •3.1. Основные определения, относящиеся к топологии электрических цепей
- •3.2. Топологический граф электрических цепей
- •3.3. Компонентные и топологические уравнения электрической цепи
- •3.4. Система уравнений электрического равновесия цепи
- •Лекция № 4 Тема 4. Расчёт цепей методом комплексных амплитуд
- •4.1. Комплексные числа и действия над ними
- •4.2. Гармоническая функция времени и ее параметры»
- •4.3. Комплексное изображение гармонической функции
- •Лекция № 5
- •4.4. Понятие о методе комплексных амплитуд
- •4.5. Комплексные сопротивление и проводимость цепи при гармоническом воздействии
- •4.6. Омическое сопротивление при гармоническом воздействии
- •4.7. Ёмкость при гармоническом воздействии
- •Лекция № 6
- •4.8. Индуктивность при гармоническом воздействии
- •4.9. Закон Ома в комплексной форме для участка цепи
- •4.10. Первый и второй законы Кирхгофа в комплексной форме
- •4.11. Этапы расчёта электрических цепей методом комплексных амплитуд
- •Лекция № 7 Тема 5. Энергетические процессы в электрических цепях при гармоническом воздействии
- •5.1. Мгновенная и полная мощность цепи при гармоническом воздействии
- •5.2. Комплексная мощность цепи при гармоническом воздействии
- •5.3. Согласование нагрузки с источником энергии
- •Тема 6. Анализ простейших электрических цепей при гармоническом воздействии
- •6.1. Последовательная rl-цепь при гармоническом воздействии
- •Лекция № 8
- •6.2. Последовательная rc-цепь при гармоническом воздействии
- •6.3. Параллельная rl-цепь при гармоническом воздействии
- •6.4. Параллельная rс-цепь при гармоническом воздействии
- •Тема 7. Преобразования электрических цепей
- •7.1. Преобразование последовательной цепи в параллельную и обратно
- •7.2. Комплексные схемы замещения источников напряжения и тока
- •Тема 8. Методы расчёта сложных электрических цепей
- •8.1. Метод контурных токов
- •Лекция № 9
- •8.2. Метод узловых напряжений
- •8.3. Метод наложения
- •8.4. Метод эквивалентного источника
- •Лекция № 10 Тема 9. Индуктивно связанные электрические цепи
- •9.1. Понятие взаимной индукции и взаимной индуктивности
- •9.3. Коэффициент связи между катушками индуктивности
- •9.4. Эквивалентное преобразование участков цепи, содержащих индуктивно связанные катушки
- •Лекция № 11
- •9.5. Линейный трансформатор без сердечника и его характеристики
- •Тема 10. Комплексные характеристики электрических цепей
- •10.1. Понятие о комплексных характеристиках цепи
- •10.2. Комплексные характеристики простейших rl- и rc-четырёхполюсников с одним реактивным элементом
- •Лекция № 12
- •10.3. Понятие о колебательных электрических цепях и резонансе
- •Тема 11. Последовательный колебательный контур
- •11.1. Резонансная частота и волновое сопротивление последовательного контура
- •11.2. Энергетические соотношения в последовательном контуре
- •11.3. Комплексное сопротивление последовательного контура
- •Лекция № 13
- •11.4. Виды расстроек и полоса пропускания последовательного контура
- •11.5. Комплексный коэффициент передачи последовательного контура
- •11.6. Влияние сопротивления источника энергии и нагрузки на характеристики последовательного контура
- •Лекция № 14 Тема 12. Параллельный колебательный контур
- •12.1. Виды параллельных контуров и их обобщенная схема
- •12.2. Параметры и эквивалентная схема параллельного контура первого вида
- •12.3. Комплексное сопротивление параллельного контура первого вида
- •12.4. Комплексный коэффициент передачи параллельного контура первого вида
- •12.5. Влияние сопротивления источника тока и сопротивления нагрузки на характеристики параллельного контура первого вида
- •Лекция № 15
- •12.6. Характеристики параллельного контура второго вида
- •12.7. Характеристики параллельного контура третьего вида
- •Тема 13. Связанные колебательные контуры
- •13.1. Виды связанных контуров и их обобщённая схема
- •Лекция 16
- •13.2. Коэффициент связи и виды настройки связанных контуров
- •13.3. Амплитудно-частотная характеристика связанных контуров
- •Заключение
5.3. Согласование нагрузки с источником энергии
Рассмотрим электрическую цепь, состоящую из источника энергии и нагрузки.
Пусть источник энергии представлен
последовательной схемой замещения (рис
5.2), причем его внутреннее сопротивление
имеет комплексный характер:
.
Задача согласования нагрузки с источником
энергии заключается в выборе такого
сопротивления нагрузки
,
при котором в цепи будут выполняться
требуемый критерий согласования.
П
Рис. 5.2
.
Отсюда видно, что
является функцией двух переменных:
и
.
В связи с тем, что вещественная и мнимая
составляющая сопротивления нагрузки
не зависят одна от другой, выбор значения
каждой из этих величин соответствующего
максимуму
,
можно производить в отдельности. Величина
входит
только в знаменатель выражения для
активной мощности. Очевидно, что
максимальное значение
по этой переменной будет достигнуто,
если
.
При этом
.
Для определения значения
,
соответствующего наибольшему возможному
значению (максимум-максиморум) активной
мощности нагрузки
,
продифференцируем
по
и
приравняем к нулю полученное выражение
,
или
.
Решая уравнение, находим условие
,
при котором этом активная мощность
достигает максимально возможного
значения (рис. 5.3, а)
.
а) б)
Рис. 5.3
Объединяя полученные условия, находим,
что максимально возможное значение
активной мощности нагрузки
соответствует
,
то есть сопротивление нагрузки должно
быть равно сопротивлению, комплексно
сопряженному с внутренним сопротивлением
источника.
В частном случае, если внутреннее
сопротивление источника имеет резистивный
характер (
),
то для согласования источника энергии
с нагрузкой по критерию наибольшей
активной мощности, передаваемой в
нагрузку, сопротивление нагрузки должно
быть равно внутреннему сопротивлению
источника.
Второй критерий согласования источника с нагрузкой заключается в обеспечении максимума коэффициента полезного действия (КПД) цепи, который равен отношению активной мощности , потребляемой нагрузкой, к суммарной активной мощности в цепи
.
Зависимость КПД от резистивной
составляющей сопротивления нагрузки
показана на рис. 5.3, б. Из рисунка
видно, что КПД цепи монотонно возрастает
с ростом отношения
,
приближаясь к единице
при
.
Таким образом, для согласования источника
с нагрузкой по критерию максимума КПД,
необходимо, чтобы резистивная составляющая
сопротивления нагрузки была намного
больше резистивной составляющей
внутреннего сопротивления источника
(
).
Однако рассмотренные два критерия согласования источника энергии с нагрузкой не могут быть выполнены одновременно. Критерий максимума КПД применяется в основном в электротехнике в мощных электроэнергетических системах, а согласование по критерию максимума мощности, передаваемой в нагрузку, используется в радиотехнике в маломощных радиоэлектронных устройствах.
