- •Конспект лекций
- •Содержание
- •Тема 12. Параллельный колебательный контур 75
- •Тема 13. Связанные колебательные контуры 83
- •Лекция № 1 Введение
- •Библиографический список
- •Тема 1. Основные понятия теории электрических цепей
- •1.1. Электрическая цепь
- •1.2. Электрический ток
- •1.3. Электрическое напряжение
- •1.4. Электродвижущая сила
- •1.5. Электрическая энергия и мощность
- •1.6. Электрическая схема
- •Лекция № 2 Тема 2. Идеализированные элементы электрической цепи
- •2.1. Сопротивление
- •2.2. Ёмкость
- •2.3. Индуктивность
- •2.4. Схемы замещения реальных электрических элементов
- •2.5. Идеальный источник напряжения
- •2.6. Идеальный источник тока
- •2.7. Схемы замещения реальных источников электрической энергии
- •Лекция № 3 Тема 3. Уравнения электрического равновесия цепи
- •3.1. Основные определения, относящиеся к топологии электрических цепей
- •3.2. Топологический граф электрических цепей
- •3.3. Компонентные и топологические уравнения электрической цепи
- •3.4. Система уравнений электрического равновесия цепи
- •Лекция № 4 Тема 4. Расчёт цепей методом комплексных амплитуд
- •4.1. Комплексные числа и действия над ними
- •4.2. Гармоническая функция времени и ее параметры»
- •4.3. Комплексное изображение гармонической функции
- •Лекция № 5
- •4.4. Понятие о методе комплексных амплитуд
- •4.5. Комплексные сопротивление и проводимость цепи при гармоническом воздействии
- •4.6. Омическое сопротивление при гармоническом воздействии
- •4.7. Ёмкость при гармоническом воздействии
- •Лекция № 6
- •4.8. Индуктивность при гармоническом воздействии
- •4.9. Закон Ома в комплексной форме для участка цепи
- •4.10. Первый и второй законы Кирхгофа в комплексной форме
- •4.11. Этапы расчёта электрических цепей методом комплексных амплитуд
- •Лекция № 7 Тема 5. Энергетические процессы в электрических цепях при гармоническом воздействии
- •5.1. Мгновенная и полная мощность цепи при гармоническом воздействии
- •5.2. Комплексная мощность цепи при гармоническом воздействии
- •5.3. Согласование нагрузки с источником энергии
- •Тема 6. Анализ простейших электрических цепей при гармоническом воздействии
- •6.1. Последовательная rl-цепь при гармоническом воздействии
- •Лекция № 8
- •6.2. Последовательная rc-цепь при гармоническом воздействии
- •6.3. Параллельная rl-цепь при гармоническом воздействии
- •6.4. Параллельная rс-цепь при гармоническом воздействии
- •Тема 7. Преобразования электрических цепей
- •7.1. Преобразование последовательной цепи в параллельную и обратно
- •7.2. Комплексные схемы замещения источников напряжения и тока
- •Тема 8. Методы расчёта сложных электрических цепей
- •8.1. Метод контурных токов
- •Лекция № 9
- •8.2. Метод узловых напряжений
- •8.3. Метод наложения
- •8.4. Метод эквивалентного источника
- •Лекция № 10 Тема 9. Индуктивно связанные электрические цепи
- •9.1. Понятие взаимной индукции и взаимной индуктивности
- •9.3. Коэффициент связи между катушками индуктивности
- •9.4. Эквивалентное преобразование участков цепи, содержащих индуктивно связанные катушки
- •Лекция № 11
- •9.5. Линейный трансформатор без сердечника и его характеристики
- •Тема 10. Комплексные характеристики электрических цепей
- •10.1. Понятие о комплексных характеристиках цепи
- •10.2. Комплексные характеристики простейших rl- и rc-четырёхполюсников с одним реактивным элементом
- •Лекция № 12
- •10.3. Понятие о колебательных электрических цепях и резонансе
- •Тема 11. Последовательный колебательный контур
- •11.1. Резонансная частота и волновое сопротивление последовательного контура
- •11.2. Энергетические соотношения в последовательном контуре
- •11.3. Комплексное сопротивление последовательного контура
- •Лекция № 13
- •11.4. Виды расстроек и полоса пропускания последовательного контура
- •11.5. Комплексный коэффициент передачи последовательного контура
- •11.6. Влияние сопротивления источника энергии и нагрузки на характеристики последовательного контура
- •Лекция № 14 Тема 12. Параллельный колебательный контур
- •12.1. Виды параллельных контуров и их обобщенная схема
- •12.2. Параметры и эквивалентная схема параллельного контура первого вида
- •12.3. Комплексное сопротивление параллельного контура первого вида
- •12.4. Комплексный коэффициент передачи параллельного контура первого вида
- •12.5. Влияние сопротивления источника тока и сопротивления нагрузки на характеристики параллельного контура первого вида
- •Лекция № 15
- •12.6. Характеристики параллельного контура второго вида
- •12.7. Характеристики параллельного контура третьего вида
- •Тема 13. Связанные колебательные контуры
- •13.1. Виды связанных контуров и их обобщённая схема
- •Лекция 16
- •13.2. Коэффициент связи и виды настройки связанных контуров
- •13.3. Амплитудно-частотная характеристика связанных контуров
- •Заключение
4.9. Закон Ома в комплексной форме для участка цепи
Составим компонентное уравнение участка
электрической цепи (рис. 4.20) к которой
приложено гармоническое напряжение.
,
где
и
— амплитуда и начальная фаза напряжения
Поскольку цепь представляет собой последовательного соединения идеализированных сопротивления , индуктивности и ёмкости , то напряжение приложенное к цепи равно сумме напряжений на элементах цепи, которая с учётом (2.1), (2.5) и (2.10) представляет собой интегро-дифференциального уравнение
. (4.20)
При гармоническом воздействии ток цепи
в установившемся режиме будет также
гармонической функцией времени той же
частоты,
Рис. 4.20
,
где
и
— амплитуда и начальная фаза тока.
В соответствии с методом комплексных
амплитуд, заменим в уравнении (4.20)
оригиналы напряжения
и тока
их изображениями в показательной форме
записи
и
,
где
,
— комплексные амплитуды напряжения и
тока.
Полагая начальной напряжение на ёмкости
равным нулю
и преобразуя полученное уравнение,
находим
.
Сократив общий для всех членов уравнения множитель , получим
.
Тогда
, (4.21)
где
— комплексная функция, которая называется
комплексным сопротивлением участка
цепи.
Видно, что комплексное сопротивление участка цепи, образованного путём последовательного соединении элементов, равно сумме комплексных сопротивлений этих элементов.
Запишем комплексное сопротивление участка цепи в показательной форме
,
где
и
— модуль и аргумент комплексного
сопротивления.
Решая уравнение (4.21) относительно комплексного сопротивления, находим
. (4.22)
Откуда следует, что модуль комплексного сопротивления определяется отношением комплексных амплитуд или действующих значений напряжения и тока цепи
а аргумент — фазовым сдвигом между комплексными или вещественными функциями напряжения и тока цепи
.
Если аргумент комплексного сопротивления
равен нулю
,
то говорят, что сопротивление имеет
резистивный (активный) характер. Если
аргумент комплексного сопротивления
равен
,
то говорят, что сопротивление имеет
индуктивный характер. Если аргумента
сопротивления находится на интервале
,
то говорят, что сопротивление носит
резистивно-индуктивный характер.
Величина, обратная комплексному сопротивлению (4.22), называется комплексной проводимостью участка цепи
. (4.23)
где
и
— модуль и аргумент комплексной
проводимости цепи.
Из (4.23) следует, что аргумент комплексной
проводимости цепи равен фазовому сдвигу
между током и напряжением цепи. Если
аргумент комплексной проводимости
равен нулю
,
то говорят, что проводимость имеет
активный характер. Если аргумент
комплексной проводимости равен
,
то говорят, что проводимость имеет
индуктивный характер. Если аргумент
комплексной проводимости находится в
интервале
,
то говорят, что проводимость имеет
резистивно-индуктивный характер.
Уравнение (4.21) — (4.23) представляют собой
разные формы записи законом Ома в
комплексной форме для участка цепи.
Аналогичным образом закон Ома в
комплексной форме для участка цепи
может быть записан для комплексных
действующих значений тока
и напряжения
:
;
.
