- •Учебное пособие по курсу «Эксплуатация дорожных машин» для втф 2014 г. Подготовил доцент Котлобай а.Я.
- •1. Эксплуатационные свойства и эффективность использования дорожных машин
- •1.1. Показатели эксплуатационных свойств
- •1.2. Производительность и выработка дорожных машин
- •1.3. Система показателей оценки эффективности использования дорожных машин
- •2. Рабочие режимы и области рационального применения машин
- •2.1. Режимы работы машин
- •2.2. Области рационального применения машин
- •2.3. Особенности эксплуатации машин в механизированных комплектах
- •3. Организация механизированных дорожно-строительных работ
- •3.1. Структура системы управления строительством дорог
- •3.2. Принципы управления дорожно-строительными организациями
- •3.3. Поточный метод организации дорожно-строительных работ
- •3.4. Зональный комплексно-механизированный поток
- •3.5. Сетевой метод организации дорожно-строительных работ
- •4. Автотранспортные средства в дорожном строительстве
- •4.1. Классификация автотранспортных средств
- •4.2. Управление автомобильными перевозками в дорожном строительстве
- •5. Эксплуатационные испытания машин и оборудования
- •5.1. Цели и задачи испытаний
- •5.2. Методы определения показателей эксплуатационных свойств
- •5.3. Регламентные испытания
- •6 Охрана труда при использовании машин в дорожном строительстве
- •61. Охрана труда при работе землеройно-транспортного комплекса
- •6.2. Охрана труда при работе комплекса по устройству дорожных покрытий
- •6.3. Охрана окружающей среды при работе дорожных машин
- •7. Работоспособность дорожных машин
- •7.1. Показатели работоспособности машин
- •7.2. Закономерности изменения показателей работоспособности и их влияние на эффективность использования машин
- •7.3. Оптимизация ресурсов машин
- •8. Основы долговечности дорожных машин
- •8.1. Изнашивание
- •8.2. Коррозионное разрушение деталей
- •8.3. Усталость и старение материалов
- •9. Обеспечение работоспособности сборочных единиц дорожных машин
- •9.1. Правила замены деталей при эксплуатационном ремонте
- •9.2. Плановый ремонт. Определение назначенного ресурса
- •9.3. Разновидности эксплуатационного ремонта
- •10. Системы технического обслуживания и ремонта машин
- •10.1. Планово-предупредительная система технического обслуживания и ремонта дорожных машин
- •10.2. Определение и обеспечение выполнения ресурсов машин и их основных агрегатов
- •10.3. Определение потребности в оборотных агрегатах и запасных частях
- •10.4. Планирование технического обслуживания и ремонта машин
- •11. Организация технического обслуживания и ремонта машин
- •11.1. Организация работ по восстановлению работоспособности машин в эксплуатации
- •12.2. Техническое обслуживание и ремонт на базах механизации и местах работы
- •12.3. Централизация, специализация и механизация технического обслуживания и ремонта машин
- •12.4. Организация ремонтных участков и бригад при техническом обслуживании и ремонте машин
- •13. Основы проектирования мастерских баз механизации
- •13.1. Общие сведения и порядок технологического проектирования баз механизации
- •13.2. Расчет производственной программы, объема работ и численности производственного персонала
- •13.3. Определение количества постов и оборудования
- •13.4. Расчет площадей помещений
- •13.5. Разработка планировочных решений
- •13.6. Технико-экономическая оценка проектных решений
- •14 Правила эксплуатации машин
- •14.1. Подготовка машин к эксплуатации
- •14.2. Обкатка машин перед эксплуатацией
- •14.3. Транспортирование машин
- •14.4. Монтаж и демонтаж машин в эксплуатационных условиях
- •14.5. Хранение и консервация машин
- •15. Технология технического обслуживания машин
- •15.1. Внешний уход за машиной и крепежные работы
- •15.2. Регулировочные работы при техническом обслуживании дорожных машин
- •15.2.1. Регулировка машин
- •15.2.2. Регулировка двигателей внутреннего сгорания
- •15.2.5. Регулировка ходовых механизмов
- •15.3. Смазывание дорожных машин
- •15.3.1. Влияние смазочных материалов на работу машин
- •15.3.2. Выбор смазочных материалов
- •15.4. Особенности эксплуатации дорожных машин в условиях низких температур
- •15.4.1. Влияние низких температур на эксплуатацию машин
- •5.4.2. Подготовка и пуск машин в условиях низких температур
- •16. Организация технологического процесса технического обслуживания дорожных машин
- •16.1. Методы и формы технического обслуживания
- •16.2. Организация технического обслуживания в дорожном строительстве
- •17. Технология эксплуатационного ремонта машин
- •17.1. Виды и организационные формы эксплуатационного ремонта
- •17.2. Области применения индивидуального и агрегатного ремонтов
- •17.3. Стационарные и передвижные средства ремонта машин
- •17.4. Определение потребности в передвижных средствах технического обслуживания и ремонта машин
- •18. Техническое обслуживание подъемно-транспортных машин (содержание работ)
- •18.1. Общие виды работ
- •18.2. Техническое обслуживание типовых механизмов и деталей грузоподъемных машин
- •18.3. Техническое обслуживание металлических конструкций
- •18.4. Техническое обслуживание электрического оборудования
- •19 Диагностирование строительных и дорожных машин
- •19.1. Роль технического диагностирования в системе обеспечения надежности машин
- •19.2. Диагностические параметры
- •19.3. Методы диагностирования
- •19.4. Метод принятия решений по результатам диагностирования
- •19.5. Технология диагностирования
- •19.5.1. Организация диагностирования грузоподъемных машин
- •19.6. Диагностические системы
- •19.7. Структурная схема диагностирования
- •19.8. Диагностирование машины в целом
- •19.9. Диагностирование систем двигателя внутреннего сгорания
- •19.11. Диагностирование трансмиссии, редукторов, зубчатых и червячных передач, подшипников и валов
- •19.12. Диагностирование барабанов, муфт, тормозов
- •19.13. Диагностирование крюковых подвесок, блоков, полиспастов и канатов
- •19.14. Диагностирование ходовых колес, катков, крановых и тележечных путей
- •19.15. Диагностирование движителей
- •19.16. Диагностирование систем управления сдм
- •19.17. Диагностирование силового электропривода
- •19.19. Диагностирование металлоконструкций сдм и гпм
- •19.19.1. Виды дефектов и повреждений металлических конструкций
- •19.19.2. Диагностирование элементов металлоконструкций
- •19.19.3. Контроль дефектов металлоконструкций и сварных соединений
- •19.19.4. Коррозионные повреждения металлоконструкции кранов
- •19.19.5. Контроль уровня рабочего напряжения в металлоконструкциях машин
- •19.20. Диагностирование гидропривода
- •20. Топливо, смазки, рабочие жидкости
- •20.1 Общие свойства топлив
- •20.1.1 Классификация
- •20.1.2 Состав топлива
- •20.1.3 Определение сухой, горючей и рабочей массы топлива
- •20.1.5 Тепловая ценность топлива
- •20.1.6 Горение топлива
- •20.1.7 Определение количества воздуха, необходимого для горения
- •20.2. Нефть и продукты ее переработки
- •20.2.1. Основные физические свойства нефтей
- •20.2.2. Групповой химический состав нефтей и нефтепродуктов
- •20.2.3. Сернистые, кислородные и азотистые соединения нефтей, минеральные примеси и вода
- •20.2.4. Понятие о классификации нефтей
- •20.2.5. Общие сведения о получении топлив и масел
- •20.2.6. Получение топлив и масел прямой перегонкой
- •20.2.7. Основные сведения о получении топлив химической переработкой
- •20.2.8. Очистка нефтепродуктов
- •20.3. Топливо для карбюраторных двигателей
- •20.3.1. Эксплуатационные требования
- •20.3.2. Карбюрационные свойства
- •20.3.3. Теплота сгорания горючей смеси
- •20.3.4. Нормальное и детонационное сгорание топлива в двигателе
- •20.3.5. Октановое число
- •20.3.6. Антидетонаторы
- •20.3.7. Смолообразование и нагарообразование
- •20.3.8. Корродирующее действие топлив
- •20.3.9 Марки топлив для карбюраторных двигателей
- •20.4. Топливо для дизельных двигателей
- •20.4.1. Общие сведения и эксплуатационные требования
- •20.4.2. Вязкость дизельных топлив
- •20.4.3. Низкотемпературные свойства
- •20.4.4. Сгорание топлива в быстроходных дизельных двигателях
- •20.4.5. Цетановое число
- •20.4.6. Нагарообразование в дизельных двигателях
- •20.4.7. Коррозийные свойства топлив
- •20.4.8. Эксплуатационное значение прочих свойств дизельных топлив
- •20.4.9. Марки топлив для дизельных двигателей
- •20.5. Газообразное топливо
- •20.5.1. Общие сведения
- •20.5.2. Естественное газообразное топливо
- •20.5.3. Искусственное газообразное топливо
- •20.5.4. Сжатые и сжиженные газы
- •20.6. Твердое топливо
- •20.6.1. Ископаемые угли
- •20.6.2. Сланцы
- •20.6.3. Торф
- •20.6.4. Древесина и отходы сельскохозяйственного производства
- •20.6.5. Искусственное твердое топливо
- •20.7. Основные законы трения и смазки
- •20.7.1. Назначение смазочных масел и виды трения
- •20.7.2. Жидкостное трение
- •20.7.3. Граничное трение
- •20.7.4. Классификация смазочных материалов
- •20.8. Эксплуатационные свойства масел
- •20.8.1. Вязкостные свойства
- •20.8.2. Окисляемость моторных масел
- •20.8.3. Противоизносные свойства масел
- •20.8.4. Коррозийные свойства масел
- •20.9. Присадки к смазочным маслам
- •20.9.1. Общие сведения
- •20.9.2. Индивидуальные присадки
- •20.9.3. Многофункциональные присадки
- •20.10. Масла для двигателей внутреннего сгорания
- •20.10.1. Условия работы масел и требования, предъявляемые к ним
- •20.10.2. Система обозначений масел
- •20.10.3.Ассортимент масел для карбюраторных двигателей
- •20.10.4. Масла для дизелей
- •20.11. Трансмиссионные масла
- •20.11.1. Общие требования и свойства
- •20.11.2. Классификация трансмиссионных масел и система обозначений
- •20.11.3. Ассортимент трансмиссионных масел
- •20.12. Рабочие жидкости для гидравлических систем
- •20.12.1. Общие требования и свойства
- •20.12.2. Система обозначений рабочих жидкостей
- •20.12.3. Ассортимент и свойства рабочих жидкостей
- •20.13. Тормозные и амортизаторные жидкости
- •20.14. Пластичные смазки
- •20.14.1. Назначение смазок
- •20.14.2. Состав смазок
- •20.14.3. Классификация смазок
- •20.14.4. Свойства смазок
- •20.15. Битумы
- •20.15. Смазочно-охлаждающие технологические средства
- •20.15.1. Назначение и эксплуатационные требования
- •20.15.2. Особенности применения сотс
19.19.4. Коррозионные повреждения металлоконструкции кранов
По характеру повреждаемости поверхностей коррозия бывает сплошная и местная, равномерная, неравномерная, избирательная, точечная. Для крановых металлоконструкций скорость распространения коррозии в обычных условиях составляет 0,03...0,05 мм/год.
Атмосферная коррозия металлов – наиболее распространенный вид электрохимической коррозии, протекающей во влажном воздухе при обычных температурах. Коррозионная среда во всех случаях представляет собой слой влаги, в котором растворены кислород и двуокись углерода, а в промышленной атмосфере еще и двуокись серы, окислы азота, сероводорода и др. Времена года оказывают комплексное воздействие на скорость коррозии металла. Весной при таянии снегов скорость коррозии увеличивается из-за повышения концентрации минеральных солей, которая может достигать 200 мг/м.
Контактная коррозия заключается в наличии разности электрических потенциалов между контактирующими металлами, различающимися структурным состоянием. В металлоконструкциях контактная коррозия обычно развивается в околошовной зоне, так как сварные швы отличаются химическим составом и структурой от основного металла. Контактная коррозия приводит к распирающим нагрузкам в соединениях вследствие увеличивающегося объема окисленных слоев металла.
Щелевая коррозия возникает в узких полостях различных соединений и определяется химическими и электрохимическими процессами из-за скопления влаги и растворов различных солей. В результате возникают распирающие усилия из-за увеличения объема окисленных слоев металла.
Наиболее часто в крановых металлоконструкциях встречается коррозия под напряжением, которая является источником развития усталостных трещин. Этот вид коррозии возникает при одновременном воздействии деформации и агрессивной среды, что приводит к коррозионному растрескиванию и коррозионной усталости.
Коррозионно-механическое изнашивание крановых металлоконструкций контролируют с помощью толщиномеров. Наиболее эффективными являются ультразвуковые толщиномеры.
Основным видом защиты от коррозии металлических конструкций является их окраска. Исследованием установлено, что периодичность окраски находится в пределах 4…7 лет для континентальных районов.
19.19.5. Контроль уровня рабочего напряжения в металлоконструкциях машин
Прочность и эксплуатационная надежность металлоконструкций машин и их отдельных элементов связаны с напряженным состоянием, в том числе с рабочими и остаточными напряжениями. Потребность в экспериментальном определении остаточных напряжений приобретает первостепенное значение. В промышленности для проведения таких измерений применяют механические методы (рассечения, тензометрический), которые сопровождаются полным или частичным разрушением объекта исследования, и физические методы (рентгеновский, ультразвуковой, магнитный), позволяющие сохранить объект неповрежденным.
Метод рассечения связан с полным разрушением образца и измерением возникающих при этом деформаций, по которым можно судить об остаточных напряжениях.
Тензометрический метод сопряжен с частичным разрушением изделия и имеет несколько разновидностей: методы освобождения, отверстия, канавки и т. д. Эти методы определения уровня рабочих и остаточных напряжений в реальных конструкциях в полевых условиях не пригодны.
Рентгеновский метод позволяет измерять изменение расстояния между кристаллографическими плоскостями, вызванное имеющимися остаточными напряжениями. С помощью рентгеновского метода исследуется не осредненная ситуация, а агрегат из зерен определенного вида. Глубина проникновения рентгеновских лучей и, следовательно, толщина исследуемого слоя металла детали составляет 5…20 мкм.
Магнитный метод измерения остаточных напряжений базируется на связи между магнитными свойствами металла объекта и его напряженным состоянием. Всякая деформация ферромагнитного материала в результате приложения тех или иных нагрузок сопровождается изменением ориентации кристаллов и тем самым изменением его магнитных свойств (магнитоупругий эффект). При действии на металл упругих напряжений проводимость в различных направлениях меняется. По этому изменению можно судить о напряжениях. Остаточные напряжения измеряют магнитным методом в такой последовательности: ориентируют преобразователь на поверхности объекта контроля; устанавливают градуировочное значение магнитного сопротивления зазора между преобразователем и поверхностью объекта; измеряют напряженное состояние металла объекта.
