- •48.Открытия Велера и Кольбе.
- •49.Открытия а. Я. Данилевского
- •50,Роль э.Фишера в становлении биохимии
- •52.Современные методы биохимии
- •53.Выделение белков в отдельный класс биологических мролекул.Молекул .Работы Антуана де Фуркруа. Первые открытые белки – альбумин, фибрин, глютен.
- •54.Открытие аминокислот.
- •55.Пептидная теория строения белков. Современное представление о структуре белка
- •56.Гетерогенность белковой молекулы Фракционирование белков; методы гель-электрофореза и пр.
- •57.Открытие структуры днк
- •58,Пищевая биотехнология как научная дисциплина.
- •59,Биотехнологические процессы при получении кисломолочных продуктов, сыра, сливочных и растительных масел.
- •60.Биотехнологические процессы при получении пищевых кислот - уксусной, ли- монной, молочной и винной.
- •61,Биотехнологические процессы при консервировании плодоовощной продукции (квашение)
- •62,Биотехнологические процессы при производстве аминокислот, органических кислот, витаминов и бав
- •63.Основные направления генной инженерии микроорганизмов, растений и жи- вотных, используемых для производства продуктов питания с гми
- •64,Биотехнологические процессы при производстве и алкогольсодержащих напитков (спирт, вино, пиво).
- •65,Применение биотехнологии в производстве пищевого белка
- •66,Медико-биологическая оценка новых видов пищевой продукции, полученной из генетически модифицированных источников
- •67,Возможность новой «зеленой революции» и выведение более адаптированных продовольственных культур
- •68,Структурные изменения в производстве продуктов питания, обусловленные мировыми тенденциями
- •69,Связь изменений климата и структуры питания
- •70.Факторы и возможности для увеличения производства продовольствия в мире
53.Выделение белков в отдельный класс биологических мролекул.Молекул .Работы Антуана де Фуркруа. Первые открытые белки – альбумин, фибрин, глютен.
История целенаправленного изучения белков началась в XVIII веке, когда в результате работ французского химика Антуана Франсуа де Фуркруа и других учёных по изучению таких веществ как альбумин, фибрин и глютен, белки были выделены в отдельный класс молекул.
В 1836 году появилась первая модель химического строения белков. Эта модель была предложена Мулдером на основании теории радикалов, и до конца 1850-х она оставалось общепризнанной. А всего через 2 года в 1838 году белкам было дано современное название – протеины. Его предложил работник Мулдера Якоб Йенс Берцелиус.
К концу XIX века было исследовано большинство аминокислот, входящих в состав белков, что видимо и послужило толчком к тому, что в 1894 году немецкий ученый Альбрехт Коссель выдвинул теорию, согласно которой именно аминокислоты являются основными структурными элементами белков.
В начале XX века предположение Косселя было экспериментально доказано немецким химиком Эмилем Фишером.
В 1926 году американский химик Джеймс Самнер доказал, что фермент уреаза, вырабатываемый в организме относится к белкам. Своим открытием он открыл дорогу к осознанию важности роли играемой белками в организме человека.
В 1949 году Фред Сенгер получил аминокислотную последовательность гормона инсулина и тем самым доказал, что белки — это линейные полимеры аминокислот.
В 1960-х годах были получены первые пространственные структуры белков, основанные на дифракции рентгеновских лучей на атомарном уровне.
Научные работы по изучению этого высокомолекулярного органического вещества продолжается и в наши дни. Существует даже отдельная наука о протеинах – протеомика
Основные работы посвящены систематизации и классификации химических соединений. Фуркруа был одним из ближайших соратников Фуркруа был широко известен как автор учебников и монографий по химии. В особенности широкое распространение получило его сочинение «Элементы естественной истории и химии» в четырех томах (1786), представляющее собой переработку его же книги «Элементарные лекции по естественной истории и химии» в двух томах (1782). Принимал участие в издании «Методической энциклопедии по химии, фармации и металлургии» (1786-1789). Эти сочинения многократно переиздавалось на различных языках. Выступал как популяризатор науки. Написал работы «Химическая философия» (1792, русские переводы 1799 и 1812) и «Система химических знаний» (т.1-2, 1801-1802). Иностранный почётный член Петербургской академии наук (с 1802).
54.Открытие аминокислот.
История химии аминокислот связаны с тремя открытиями.
В 1806 г. открыто первое аминокислотное производное — амид аспарагин.
В 1810 г. открыта первая аминокислота — цистин, которая была выделена из объекта небелковой природы — мочевых камней.
В 1820 г. аминокислота глицин впервые выделена из белкового гидролизата и более или менее тщательно очищена.
Входящие в состав белков аминокислоты классифицируют в зависимости от особенностей их боковых групп. Например, исходя из их отношения к воде при биологических значениях рН (около рН 7,0), различают неполярные, или гидрофобные, аминокислоты и полярные, или гидрофильные. Кроме того, среди полярных аминокислот выделяют нейтральные (незаряженные); они содержат по одной кислой (карбоксильная) и одной основной группе (аминогруппа). Если же в аминокислоте присутствует более одной из вышеназванных групп, то их называют, соответственно, кислыми и основными.
Большинство микроорганизмов и растения создают все необходимые им аминокислоты из более простых молекул. В отличие от них животные организмы не могут синтезировать некоторые из аминокислот, в которых они нуждаются. Такие аминокислоты они должны получать в готовом виде, то есть с пищей. Поэтому, исходя из пищевой ценности, аминокислоты делят на незаменимые и заменимые. К числу незаменимых для человека аминокислот относятся валин, треонин, триптофан, фенилаланин, метионин, лизин, лейцин, изолейцин, а для детей незаменимыми являются также гистидин и аргинин. Недостаток любой из незаменимых аминокислот в организме приводит к нарушению обмена веществ, замедлению роста и развития.
В отдельных белках встречаются редкие (нестандартные) аминокислоты, которые образуются путем различных химических превращений боковых групп обычных аминокислот в ходе синтеза белка на рибосомах или после его окончания (так называемая посттрансляционная модификация белков) (см. Белки). Например, в состав коллагена (белка соединительной ткани) входят гидроксипролин и гидроксилизин, являющиеся производными пролина и лизина соответственно; в мышечном белке миозине присутствует метиллизин; только в белке эластине содержится производное лизина — десмозин.
