- •Селеноцистеин nh2-ch(ch2-SeH)-cooh
- •Первичная структура - определяется последовательностью аминокислот в пептидной цепочке, стабилизируется ковалентными пептидными связями (инсулин, пепсин, химотрипсин).
- •Вторичная структура - пространственная структура белка. Это либо -спираль, либо -складчатость. Создаются водородные связи.
- •1.Простые(протеины)-Ак. Нет небелковых добавок
- •2Й эт. Дифференциальное центрифугирование (субфракционирование)
- •Vmax – активные центры всех молекул
- •Накапл. [s]
- •Конц. Продуктов ph мала (нет ингибиторов)
- •Прямой конкурентный формат ифа использует иммобилизованые на твердой фазе специфические антитела, а меченый ферментом и немеченый антиген конкурируют за связь с иммобилизованным антителом.
- •В непрямом конкурентном формате ифа используются меченные ферментом антитела (специфические или вторичные) и иммобилизованный на твердой фазе конъюгат антиген-белок-носитель.
- •Биосинтез и катаболизм пуриновых нуклеотидов. Регуляция биосинтеза.
- •Катаболизм пуриновых нуклеотидов. Причины формирования гиперурикемии. Пути лечебного воздействия при подагре.
- •Биосинтез и катаболизм пиримидиновых оснований. Регуляция биосинтеза.
- •Синтез пиримидинов de novo. Причины формирования оротацидурии. Пути лечебного воздействия при оротацидурии.
- •Строение и физико-химические свойства днк.
- •Методы исследования структуры днк. Гибридизация, секвенирование, пцр.
- •Строение и функции рнк.
- •Репликация днк у прокариот. Свойства днк-полимераз прокариот. Ингибиторы репликации.
- •Репликация днк у эукариот. Свойства днк-полимераз эукариот. Ингибиторы репликации.
- •Инициация, элонгация и терминация транскрипции у прокариот. Днк- зависимая рнк-полимераза прокариот.
- •Инициация, элонгация и терминация транскрипции у эукариот. Днк- зависимые рнк-полимеразы эукариот.
- •Процессинг рнк у прокариот и эукариот.
- •Активирование аминокислот. Инициация трансляции у прокариот и эукариот.
- •Процесс трансляции у прокариот. Ингибиторы трансляции.
- •Процесс трансляции у эукариот. Ингибиторы трансляции.
- •Регуляция экспрессии генов.
- •Факторы мутагенеза. Виды мутаций. Антимутагенная защита.
- •Молекулярные механизмы канцерогенеза. Пути активации протоонкогенов.
- •Источники и пути расходования аминокислот в организме. Азотистый баланс. Реакции образования и детоксикации аммиака в организме.
- •Детоксикация аммиака в организме. Цикл синтеза мочевины.
- •Болезни, вызванные генетическими дефектами ферментов цикла синтеза мочевины. Методы определения концентрации мочевины в крови и моче. Причины формирования и диагностическое значение азотемии.
- •Общие реакции обмена аминокислот. Кетогенные и глюкогенные аминокислоты.
- •Реакция декарбоксилирования аминокислот. Синтез биогенных аминов: гистамина, серотонина, катехоламинов. Общий путь распада биогенных аминов.
- •Обмен фенилаланина и тирозина. Болезни, вызванные генетическими дефектами ферментов обмена этих аминокислот.
- •Биологически активные производные тирозина. Локализация синтеза и их роль в организме.
- •Биосинтез креатина, креатинфосфата в организме. Диагностическое значение креатина и креатинина. Карнитин, карнозин, ансерин. Их роль в организме.
- •Синтез и катаболизм гема. Значение конъюгирования продуктов метаболизма гема в печени.
- •Причины гипербилирубинемии, виды желтух. Диагностическое значение общего, прямого и непрямого билирубина. Метод определения билирубина в крови.
- •6. Энергетический обмен
- •Окислительное декарбоксилирование пирувата. Пируватдегидрогеназный ферментный комплекс.
- •Цикл лимонной кислоты. Локализация, регуляция, функции.
- •Строение митохондрий и организация электрон-транспортной цепи. Ингибиторы дыхательной цепи.
- •Общие и специфические пути катаболизма белков, жиров и углеводов (по Кребсу). Виды биологического окисления.
- •Окислительное декарбоксилирование пирувата. Пируватдегидрогеназный ферментный комплекс.
- •Цикл лимонной кислоты. Локализация, регуляция, функции.
- •Строение митохондрий и организация электрон-транспортной цепи. Ингибиторы дыхательной цепи.
- •1 Комплекс. Надн-коq-оксидоредуктаза
- •3 Комплекс. КоQ-цитохром с-оксидоредуктаза
- •Строение атф-синтетазы митохондрий. Механизм сопряжения окисления и фосфорилирования. Разобщение процессов.
- •Дыхательная цепь и теплопродукция. Коэффициент р/о. Потоки важнейших метаболитов, поступающих в митохондрии и выходящих из них.
- •Системы микросомального окисления. Строение, изоформы цитохрома р450. Участие в эндогенном обмене и детоксикации.
- •Образование активных форм кислорода. Роль афк в организме, их токсичность. Антиоксидантная система.
- •70. Строение и функции углеводов в организме.
- •71. Строение и функции протеогликанов в организме. Причины мукополисахаридозов.
- •72. Глюкоза как важнейший метаболит углеводного обмена. Источники и пути использования глюкозы в организме.
- •73. Катаболизм глюкозы в присутствии кислорода (аэробный гликолиз).
- •74. Катаболизм глюкозы в анаэробных условиях (анаэробный гликолиз).
- •75. Пути образования и использования пировиноградной кислоты в клетках (напишите все ферментативные реакции).
- •76. Челночные механизмы переноса восстановленных эквивалентов через митохондриальную мембрану (глицерофосфатный и малатаспартатный).
- •77. Окисление углеводов в аэробных условиях до со2 и н2о. Энергетический выход окисления глюкозы. Метаболическая регуляция, влияние ингибиторов.
- •78. Глюконеогенез: локализация, функции, регуляция. Особенности регуляции гликолиза и глюконеогенеза в гепатоцитах.
- •86. Окисление жирных кислот. Реакции β-окисления насыщенных жирных кислот. Локализация, энергетический выход, регуляция процесса.
- •87. Окисление жирных кислот. Реакции α-окисления, ω-окисления жирных кислот. Окисление полиненасыщенных жирных кислот, жирных кислот с нечетным количеством атомов углерода.
- •88. Синтез и использование кетоновых тел. Причины и механизмы развития кетоацидоза.
- •89. Образование триацилглицеринов из углеводов. Метаболизм триацилглицеринов. Энергетическое использование глицерина. Депонирование и мобилизация жиров.
- •91. Происхождение, строение и функции желчных кислот. Энтерогепатическая циркуляция. Образование «холестериновых» камней при желчнокаменной болезни.
- •92. Строение, классификация, метаболизм и функции липопротеинов. Дислипопротеинемии.
- •93. Методы определения общего холестерина в крови. Информативность данного показателя для диагностики атеросклероза, индекс атерогенности. Механизм развития атеросклероза.
- •103. Эйкозаноиды и их роль в процессах регуляции.
- •104. Калликреин-кининовая и ренин-ангиотензиновая системы организма.
- •105. Интеграция и регуляция метаболизма. Направление потоков ключевых метаболитов между различными метаболическими путями.
1 Комплекс. Надн-коq-оксидоредуктаза
Этот комплекс также имеет рабочее название НАДН-дегидрогеназа, содержит ФМН, 22 белковых молекулы, из них 5 железосерных белков с общей молекулярной массой до 900 кДа.
Функция
Принимает электроны от НАДН и передает их на коэнзим Q (убихинон).
Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.
2 комплекс. ФАД-зависимые дегидрогеназы СУКЦИНАТ ДГ
Данный комплекс как таковой не существует, его выделение условно. Он включает в себя ФАД-зависимые ферменты, расположенные на внутренней мембране – например, ацил-SКоА-дегидрогеназа (окисление жирных кислот), сукцинатдегидрогеназа (цикл трикарбоновых кислот), митохондриальная глицерол-3-фосфат-дегидрогеназа (челночный механизм переноса НАДН в митохондрию).
Функция
Восстановление ФАД в окислительно-восстановительных реакциях.
Обеспечение передачи электронов от ФАДН2 на железосерные белки внутренней мембраны митохондрий. Далее эти электроны попадают на коэнзим Q.
3 Комплекс. КоQ-цитохром с-оксидоредуктаза
Данный комплекс включает цитохромы b и c1. Кроме цитохромов в нем имеются 2 железо-серных белка. Всего насчитывается 11 полипептидных цепей общей молекулярной массой около 250 кDа.
Функция
Принимает электроны от коэнзима Q и передает их на цитохром с.
Переносит 2 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.
4 комплекс. = ЦИТОХРОМОКСИДАЗА
В этом комплексе находятся цитохромы а и а3, он называется также цитохромоксидаза, всего содержит 6 полипептидных цепей. В комплексе также имеется 2 иона меди.
Функция
Принимает электроны от цитохрома с и передает их на кислород с образованием воды.
Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.
Далее – ферм. АТФ-синтаза, состоящий из множества белковых цепей, подразделенных на две большие группы:
одна группа формирует субъединицу Fо (произносится со звуком "о", а не "ноль" т.к олигомицин-чувствительная) – ее функция каналообразующая, по ней выкачанные наружу протоны водорода устремляются в матрикс.
другая группа образует субъединицу F1 – ее функция каталитическая, именно она, используя энергию протонов, синтезирует АТФ.
Упрощенно считают, что для синтеза 1 молекулы АТФ необходимо прохождение приблизительно 3-х протонов Н+.
ИНГИБИТОРЫ
ротенол, барбитураты, ацетальдегид – ингиб. 1.
антимицин А – 3.
CN(–), CO, H2S, азид – ингиб. цит.а3 (часть 4).
Строение атф-синтетазы митохондрий. Механизм сопряжения окисления и фосфорилирования. Разобщение процессов.
Сопряжение Ох и фосфорил, теории: 1) химич. (промеж. переносчики энергии), 2) конформационная (предп., что энергия→механич→химич), 3) хемиосмтическая. Поттер Митчелл, НП 1978. Отеч.: Скулачев и Овчинников. Суть: хим.эн., осв. в процессе транспортировки е, → в электрич.эн. мембранного потенц. → в хим.эн. АТР.
S→SH2→ДЦ→ΔμН+→АТР.
Внутр. мембр. мтх облад. оч. высоким эл. сопрот. и практически непрониц. для Н+ и ОН– → внутр. мембр. со стороны матрикса (–), межмембр. пр-ва (+).
Положения хемиосм. теории: (1) созд. ΔμН+ на внутр. мембр. мтх явл. способом сопряжения потоков энергии, выд. при транспортировке е, с аккумулированием ее в АТР.
(2) пока е движутся вдоль компонентов ДЦ, Н+ перемещ. из матрикса в межмембр. пр-во.
(3) Н+ из межмембр. пр-ва могут вернуться обратно в матрикс только через спец. канал – АТР-синтазу.
H+-ATP синтаза (H+-ATPase). F0F1-ATPsynthase. F1 (αβ)3γδε; F0 abc (9-12). F1 –в матриксе, F0 заякорен во внутр. мембр. Mg2+! 1974 описана Боуэр и Уолкер.
Каталитич. центр – α и β цепи (т.о., 3 центра). α связ. АТР и Р, β обеспец. конформац. акт.центра (каталитич. уч-ок). γ имеет фибриллярную стр-ру, спос. к вращению внутри полости αβ; обеспеч. связь F1 и F0. С γ связ. белки с → помог. вращаться *у чел-ка – 12). ε – регуляторная с/ед.
a, b – созд. канал.
Ф-ии ATP синтазы: 1) транслокационная (перенос Н+), 2) каталитическая (синт. АТР из АDP и Р), 3) сопрягающая (эн. ΔμН+ → исп. для р-ий синт. АТР).
Предп., Н+ активирует Р → остается фосфорильный остаток. Одновременно ADP теряет Н+. → 2 активн. группы → мол. АТР синт. оч. легко. Доп. эн. нужна для выталкивания АТР из акт. центра.
Механизм сопр. Ох и фосф.
РАЗОБЩЕНИЕ ОХ И ФОСФОРИЛ.
Разобщители – в-ва, кот. разрешают перенос е, но не дают возм. синт. АТР → обр. ΔμН+, но эн. не идет в АТР. Принцип действия разобщителей: обеспеч. утечку Н+ через внутр. мембр., сами переносят Н+ или заставляют сделать это др. в-ва → сниж. ур-нь ΔμН+<V.
Разобщители: экзо-/эндогенные. Эндогенные: (1) в-ва высшей физиологич. нормы (билирубин, тироксин, ненас. ВЖК, фенолы). (2) спец. белки-разобщ. (биол. роль – адаптация орг-ма к пониж. тем-рам). Экзогенные (ксенобиотки): (1) хим. в-ва, явл. ионофорами: (1а) хим. соед.: 2,4-динитрофенол, динитрокрезол, пентахлорфенол. (1б) антибиотики: грамицидин, валиномицин. (1в) антикоагулянты непрямого действия (трансп. Са2+). След. пирогенный эффект (экзо- 1б, 1в; эндо- 1). (2) в-ва, повр. мембраны: детергенты, АФК.
