- •Этапы технологической проработки конструкции детали.
- •1. Анализ условий эксплуатации и технических требований к детали.
- •2. Чертёж и модель детали в SolidWorks.
- •3. Характеристика станков, использующихся в изготовлении детали.
- •1. Вертикально-сверлильный станок
- •2. Токарный станок по металлу.
- •3. Фрезерный станок по металлу.
- •4. Режущий инструмент.
- •5. Анализ объёма производства.
- •6. Анализ вида заготовки.
- •Выбор схемы технологического процесса обработки детали.
- •Выбор вида обработки.
- •Разработка технологического маршрута обработки детали
- •8. Характеристика процесса термообработки детали (заготовки).
- •9. Характеристика процесса нанесения покрытия на деталь.
8. Характеристика процесса термообработки детали (заготовки).
Предварительная термическая обработка.
Предварительной термической обработкой следует называть такую обработку, которая предназначена для решения задачи по увеличению технологических свойств металла или технологичности, что важно для изготовления деталей, или повышения механических свойств готовых изделий, которые не могут быть достигнуты только в результате одной окончательной термической обработки.
Технологические задачи, которые решаются методами предварительной обработки, - это подготовка или получение такой структуры, которая обеспечивает хорошую обрабатываемость, ускорение процессов диффузии при окончательной термической обработке.
Для стали 30ХГСА проводим в качестве предварительной термической обработки полный отжиг до температуры 860°С.
Отжиг представляет собой операцию термической обработки, заключающуюся в нагреве стали, выдержке при данной температуре и последующем медленном охлаждении вместе с печью или в песке со скоростью 2-3° в минуту. В результате отжига образуется устойчивая структура, свободная от остаточных напряжений.
Отжиг является одной из важнейших массовых операций термической обработки стали.
Цель отжига:
1) снижение твердости и повышение пластичности для облегчения обработки металлов резанием;
2) уменьшение внутреннего напряжения, возникающего после обработки давлением (ковка, штамповка), механической обработки и т. д.;
3) снятие хрупкости и повышение сопротивляемости ударной вязкости;
4) устранение структурной неоднородности состава материала, возникающей при затвердевании отливки в результате ликвации;
5) изменение свойств наклепанного металла.
Выбор охлаждающей среды.
Условия аустенитизации и соответственно состояние аустенита оказывают большое влияние на кинетику фазовых превращений при последующем охлаждении и конечные свойства образующихся при этом структур стали.
Для получения мартенситной структуры при закалке стали её необходимо охлаждать со скоростью не меньшей, чем критическая скорость закалки (\/охл. > \/кр).
Для стали 30ХГСА известно, что Vкр=(760)/2*300= 1,26°С/сек.
Зная скорость охлаждения, мы можем определить закалочную среду. В данном случае при закалке на мартенсит необходимо охлаждать в масло, так как сталь 30ХГСА – легированная.
Вода как охлаждающая среда имеет некоторые существенные недостатки: высокая скорость охлаждения в области температур мартенситного превращения нередко приводит к образованию закалочных дефектов; с повышением температуры резко ухудшается закалочная способность. При температуре воды 80 – 900С пленочное кипение распространяется на большую область температур и занимает до 95% всего периода охлаждения, поэтому мы охлаждаем в масле.
При закалке изделий в горячей воде вследствие их медленного охлаждения при высоких и быстрого при низких температурах тепловые напряжения получаются низкими, а наиболее опасные структурные – высокими, что может вызвать образование трещин. Наиболее высокой и равномерной охлаждающей способностью отличаются холодные 8-12%-ные водные растворы NaCl и NaOH, которые хорошо зарекомендовали себя на практике.
