- •Методическая система обучения математике: характеристика компонентов, различные модели методических систем обучения математике.
- •Стандартизация образования в средней школе: понятие стандарта образования, поколения стандартов, технологический подход к постановке целей обучения. Результаты освоения образовательных программ.
- •Принципы обучения математике: понятие, характеристика основных дидактических принципов, предъявляемых к различным компонентам методической системы обучения математике.
- •Логико-дидактический анализ темы: понятие, основные этапы. Проведение логико-дидактического анализа темы при подготовке к уроку (на примере конкретной темы).
- •Проблема дифференциации школьного математического образования. Уровневая и профильная дифференциация. Профильная модель обучения математике.
- •Особенности применения методов обучения математике в классах с углубленным изучением математики, в средних учебных заведениях.
- •Специфика урока математики и основные требования к нему в профильных математических классах. Типы и виды уроков.
- •Тождественные преобразования рациональных выражений. Методика изучения алгебры многочленов в классах с углубленным изучением математики.
- •Технологическая цепочка обучения решению уравнений
- •Методика изучения функций при углубленном изучении математики. Изучение свойств функции с привлечением средств элементарной математики.
- •15. Методика изучения производной. Подходы к определению. Различные смыслы производной. Основные теоремы и методика работы с ним.
- •2. Различные подходы к введению понятия производной функции в курсе средней школы
- •3. Методическая схема изучения производной
- •16. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьшего значений.
- •17. Методика изучения первообразной и интеграла. Площадь криволинейной трапеции. Применение интеграла к вычислению площадей и объемов.
- •18. Цели обучения геометрии в профильной школе. Содержание курса геометрии профильной школы. Различные подходы к построению курса стереометрии. Альтернативные учебники.
- •19. Образовательные стандарты в курсе геометрии профильной школы. Трудности усвоения стереометрии. Взаимосвязи школьных курсов планиметрии и стереометрии.
- •20. Аксиоматический метод построения стереометрии. Методика ознакомления учащихся старшей школы с логическим строением курса стереометрии.
- •21. Методика изучения основных понятий и аксиом стереометрии. Развитие пространственного мышления на уроках стереометрии.
- •22. Методика изучения взаимного расположения прямых и плоскостей в пространстве. Параллельность прямых и плоскостей в курсе геометрии профильной школы.
- •23. Методика изучения взаимного расположения прямых и плоскостей в пространстве. Перпендикулярность прямых и плоскостей в курсе геометрии профильной школы.
- •24. Методика изучения геометрических фигур в курсе геометрии профильной школы. Понятие многогранника в математике и профильном ее курсе.
- •25. Методика изучения тетраэдра и параллелепипеда. Роль и место темы в профильном курсе стереометрии. Этапы изучения, средства обучения и контроля.
- •26. Методика изучения пирамиды, призмы их видов. Роль и место темы в профильном курсе стереометрии. Этапы изучения, средства обучения и контроля.
- •27. Методика изучения тел вращения. Подходы к определению. Классификация тел вращения. Особенности средств обучения и контроля. Прикладное значение темы.
- •28. Методика изучения геометрических величин в курсе геометрии профильной школы. Методика изучения площадей поверхностей многогранников и тел вращения.
- •29. Методика изучения геометрических величин в курсе геометрии профильной школы. Методика изучения объемов фигур в курсе стереометрии. Методика использования интеграла при нахождении объема фигуры.
- •30. Методика обучения решению позиционных и метрических задач на проекционном чертеже.
Особенности применения методов обучения математике в классах с углубленным изучением математики, в средних учебных заведениях.
Изменяющаяся методика обучения в профильных классах (особенно на элективных курсах) должна постепенно развивать у учащихся навыки организации умственного труда и самообразования. Основная функция учителя состоит в «сопровождении» учащегося в его познавательной деятельности, коррекции ранее полученной информации, помощи в извлечении из полученных ранее знаний тех, которые актуализируются в изучаемом курсе.
Применение исследовательского метода обучения на уроке.
Исследовательский метод определяется как самостоятельное решение учащимися новой для них проблемы с применением таких элементов научного исследования, как наблюдение и самостоятельный анализ фактов, выдвижение гипотезы и ее проверка, формулирование выводов.
Применение исследовательского метода возможно в ходе решения сложной задачи, анализа информации из учебника и других источников, разрешения поставленной учителем проблемы
Формы задания при исследовательском методе могут быть различными: поддающиеся быстрому решению; требующие целого урока; домашние задания на определенный срок.
Методы обучения включают в себя методы преподавания (средства, приемы, способы информации, управления и контроля познавательной деятельностью школьников) и методы учения (средства, приемы, способы усвоения учебного материала, репродуктивные и продуктивные приемы учения и самоконтроля) в их органической взаимосвязи.
Метод обучения математике следует рассматривать как способ движения (развития) деятельностей учителя, ученика и математического содержания. Г.И. Саранцев по характеру учебно-познавательной деятельности и организации содержания материала выделяет следующие методы обучения математике:
· индуктивно - репродуктивный учитель создает такую ситуацию, в которой ученик воспроизводит понятие или теорему в процессе рассмотрения частных случаев. Например, посредством решения задач на выделение ситуаций, удовлетворяющих условию теоремы, или решение задачи (изучение теоремы) осуществляется по плану, предложенному учителем;
· индуктивно-эвристический метод предполагает самостоятельное открытие фактов в процессе рассмотрения частных случаев. Например, упражнения на умножение степеней с одинаковым основанием приводят к открытию определения произведения степеней с одинаковыми основаниями;
· индуктивно-исследовательский метод заключается в проведении исследований различных феноменов посредством изучения их конкретных проявлений. Например, изучая свойства четырехугольников в зависимости от наличия у них осей симметрии, приходим к таким видам четырехугольника, как прямоугольник, ромб, квадрат;
· дедуктивно-репродуктивный метод предполагает воспроизведение частных случаев в процессе решения задач, где используется общее положение. Например, теорема о сумме смежных углов воспроизводится посредством решения задач на нахождение одного из смежных углов, если задан другой;
· дедуктивно-эвристический метод заключается в открытии частностей какого-либо факта при рассмотрении общего случая. Примером проявления этого метода может служить решение любой конкретной задачи на применение какой-либо теоремы;
· Дедуктивно - исследовательский Сутью этого метода обучения является организация исследований посредством дедуктивного развития учебного материала. Например, аксиоматический метод, метод моделирования, решение задач на применение теорем;
· Обобщенно - репродуктивный цель достигается путем воспроизведения изученных фактов. Например, усвоение векторного метода предполагает овладение действиями перевода геометрического языка на векторный и обратно, сложения и вычитания векторов, представления вектора в виде суммы, разности векторов и т. п. ;
· Обобщенно - эвристический метод предполагает создание учителем такой ситуации, в которой ученик самостоятельно (или с небольшой помощью учителя) приходит к обобщению. Например, измеряя стороны и углы произвольных треугольников, ученики могут открыть следующую зависимость между углами и сторонами треугольника: против большей стороны треугольника лежит больший угол и наоборот;
· Обобщенно - исследовательский метод предполагает наличие в учебном материале ситуаций, исследование которых приводит к обобщенному знанию. Например, рассматривая различные случаи расположения вписанных в окружность углов, можно прийти к известной теореме о том, что вписанный угол измеряется половиной дуги, на которую он опирается .
В зависимости от времени и места его применения, особенностей сочетания в нем различных способов, приемов и средств один и тот же метод обучения может оказаться эффективным или неэффективным. Найти удачный метод обучения в каждом конкретном случае означает найти удачную комбинацию различных приемов и средств, позволяющих достичь поставленной заранее цели (или целей) наиболее оптимальным в данных условиях путем. Чтобы успешно применять в процессе обучения математике тот или иной метод (или использовать ту или иную форму обучения), необходимо в совершенстве овладеть этим методом. Это означает:
· понимать сущность этого метода и уметь применять его в различных конкретных ситуациях обучения;
· знать наиболее часто встречающиеся формы проявления того или иного метода в процессе обучения (явные или скрытые);
· знать положительные и отрицательные стороны применения этого метода, проявляющиеся в процессе обучения; уметь оценивать его эффективность;
· знать, какие вопросы школьного курса математики целесообразно изучать именно этим методом;
· уметь научить учащихся работать именно этим методом в процессе изучения ими учебного материала.
