Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Statistika_voprosy.docx
Скачиваний:
6
Добавлен:
01.07.2025
Размер:
526.61 Кб
Скачать

23.Виды и способы отбора единиц в выборочную совокупность.

Ответ:

Существует три основных способа отбора единиц совокупности при выборочном наблюдении: случайный, механический и типический.

Случайный отбор, когда обследуемые единицы отбираются из всей совокупности наугад, т.е. каждая единица имеет совершенно одинаковые шансы попасть в выборку (например, с помощью жребия, жетонов). В ряде случае применяется способ отбора с помощью таблиц случайных чисел. С помощью жребия, в ряде случаев, сначала отбирают буквы алфавита, а затем по ним берут единицы совокупности из списков или архивов, дел, размещенных в алфавитном порядке. Поскольку начальная буква фамилии никак не влияет на вели чину, наличие или отсутствие каких-либо признаков личности и ее поведения то такой отбор тоже является случайным.

Механический отбор - это отбор каждой 5-ой, 10-ой, 20-ой и т.д. единицы совокупности. Например, из 600 уголовных дел о краже (генеральная совокупность), решено подвергнуть выборочному наблюдению 120 дел (объем выборки), разделив 600 на 120, получаем 5.

Это значит, что отбирая механически каждое 5 дело, можно получить выборку, свободную от субъективного влияния исследователя.

Типический отбор заключается в том, что генеральная совокупность сначала расчленяется на однородные группы, из которых затем производится пропорциональный отбор, например, каждой пятой, восьмой, десятой и т.д. части каждой группы.

Полученная таким образом выборочная совокупность представляет собой как бы уменьшенную модель генеральной совокупности с сохранением всех ее основных свойств и признаков. Таким способом, например, можно произвести отбор уголовных дел при одновременном изучении всего разнообразия преступлений, беря для наблюдения пропорционально от каждой категории дел соответствующую часть.

24.Ошибки выборки и методы их расчета.

Ответ:

Теоретически рассчитанная средняя выборочная величина и другие выборочные характеристики должны лишь минимально отличаться от соответствующих им генеральных статистических характеристик, т.е. выборка всегда должна давать достоверные, надежные, репрезентативные результаты.

Значение средней величины в генеральной совокупности может быть теоретически рассчитано по даным выборочной статистической совокупности следующим образом:

где  - среднее значение признака в генеральной совокупности;

  • - среднее значение признака в выборочной совокупности;

  • Δх - предельная ошибка выборки (предельная погрешность).

В cвoю очередь, предельную ошибку выборки (Δх) теоретически можно рассчитать по формуле:

гдe t - доверительной коэффициент, зависящими от уровня вероятности Р;

Мх — средняя ошибка выборки.

Доверительный коэффициент (t) означает, что по расчетному признаку генеральная совокупность "накрывается" доверительной областью.

Средняя ошибка выборки при повторном отборе рассчитывается следующим образом:

где МX — средняя ошибка выборки;

  - среднее квадратическое отклонение признака в выборочной совокупности;

n - число вариант выборочной совокупности (численность выборки).

Средняя ошибка выборки для бесповторного отбора может быть найдена по следующей формуле:

где  - дисперсии признака в выборочной совокупности;

N - число единиц в генеральной совокупности (численность генеральной совокупности).

Если сравнить среднюю ошибку выборки, рассчитанную по формулам 7.3 и 7.4, то можно заметить, что с повышением численности выборки и ее приближения к генеральной численности величина средней ошибки неизбежно сокращается.

Среднюю ошибку выборочной доли при повторном отборе можно рассчитать следующим образом:

,

гдe dх - выборочная доля признака;

n - численность выборки.

Среднюю ошибку выборочной доли при бесповторном отборе можно найти по формуле:

где N - численность генеральной совокупности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]