- •Практическая работа № 1
- •Задание 1.Решение системы линейных уравнений методом Крамера
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Задание 1.Решение системы линейных уравнений методом Крамера
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Задание 1.Решение системы линейных уравнений методом Крамера
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Задание 1.Решение системы линейных уравнений методом Крамера
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Задание 1.Решение системы линейных уравнений методом Крамера
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Задание 1.Решение системы линейных уравнений методом Крамера
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
- •Практическая работа № 1
- •Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
- •Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
- •Сделайте выводы по результатам работы
Практическая работа № 1
Тема. Решение систем линейных уравнений с тремя неизвестными методами Крамера , Гаусса, обратной матрицы. Действия с комплексными числами.
Цель работы:
Используя теоретический материал и образцы решения, закрепить навыки решения задач по теме «Решение систем линейных алгебраических уравнений различными способами»
Порядок выполнения работы:
Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
Сделайте выводы по результатам работы
Вариант№20
Задание 1. Решить систему линейных уравнений методом Крамера:
Решение. Находим определитель системы:
Находим определители при неизвестных
По формулам Крамера находим:
,
,
.
Задание 2. Решить систему уравнений
методом Гаусса. Решение. Рассмотрим расширенную матрицу и приведем ее к треугольному виду, выполняя операции над строками:
Полученная матрица описывает систему уравнений
эквивалентную исходной системе. Решение находится элементарно:
Убедимся в том, что полученный набор обращает каждое уравнение данной системы в тождество:
Задание 3. Решить систему уравнений методом обратной матрицы
x1 - x2 + x3 = 6,
2x1 + x2 + x3 = 3,
x1 + x2 +2x3 = 5.
Решение. Обозначим
Тогда данная система уравнений запишется матричным уравнением AX=B. Поскольку , то матрица A невырождена и поэтому имеет обратную:
.
Для получения решения X мы должны умножить вектор-столбец B слева на матрицу A: X = A-1B. В данном случае
и, следовательно,
.
Выполняя действия над матрицами, получим:
x1 = 1/5(1×6+3×3-2×5) = 1/5 (6+9-10) = 1,
x2 = 1/5 (-3×6 +1×3 - 1×5) = 1/5 (- 18 + 3 + 5) = -2,
x3 = 1/5 (1×6 - 2×3 + 3×5) = 1/5 (6 -6 + 15) = 3.
Итак, X = (1, -2, 3)
Задание 4. Выполнить операцию умножения комплексных чисел и .
Решение. Применяем формулу для умножения и получаем:
Вывод. В процессе выполнения данной работы я научился решать системы линейных уравнений различными методами и освоил правила выполнения арифметических действий с комплексными числами.
Практическая работа № 1
Тема. Решение систем линейных уравнений с тремя неизвестными методами Крамера , Гаусса, обратной матрицы. Действия с комплексными числами.
Цель работы:
Используя теоретический материал и образцы решения, закрепить навыки решения задач по теме «Решение систем линейных алгебраических уравнений различными способами»
Порядок выполнения работы:
Повторите теоретические положения по теме и записать определение, формулы расчета и т.П.
Выполните задание, согласно своего варианта. Исходные данные возьмите в приложении.
Сделайте выводы по результатам работы
Вариант№21
Задание 1.Решение системы линейных уравнений методом Крамера
Проверка:
Ответ: x=0,5; y=2; z=1,5 .
Задание 2. Решить методом Гаусса систему уравнений
x1 – 2x2 + x3 + x4 = –1;
3x1 + 2x2 – 3x3 – 4x4 = 2;
2x1 – x2 + 2x3 – 3x4 = 9;
x1 + 3x2 – 3x3 – x4 = –1.
Решение: Составим матрицу В и преобразуем ее. Для удобства вычислений отделим вертикальной чертой столбец, состоящий из свободных членов:
1 –2 1 1 –1
B = 3 2 –3 –4 2
2 –1 2 –3 9
1 3 –3 –1 –1
Умножим первую строку матрицы В последовательно на 3, 2 и 1 и вычтем соответственно из второй, третьей и четвертой строк. Получим матрицу, эквивалентную исходной:
1 –2 1 1 –1
0 8 –6 –7 5
0 3 0 –5 11
0 5 –4 –2 0
Третью строку матрицы умножим на 3 и вычтем ее из второй строки. Затем новую вторую строку умножим на 3 и на 5 и вычтем из третьей и четвертой строк. Получим матрицу, эквивалентную исходной:
1 –2 1 1 –1
0 –1 –6 8 –28
0 0 –1 0 –3
0 0 0 19 –19
Из коэффициентов последней матрицы составим систему, равносильную исходной:
x1 – 2x2 + x3 + x4 = –1;
X2 – 6x3 + 8x4 = –28;
– x3 = –3;
19x4 = –19.
Решим полученную систему методом подстановки, двигаясь последовательно от последнего уравнения к первому. Из четвертого уравнения x4 = –1, из третьего х3 = 3. Подставив значения х3 и x4 во второе уравнение, найдем x2 = 2. Подставив значения x2, x3, x4 в первое уравнение, найдем x1 = 1.
Ответ. (1; 2; 3;-1).
Задание 3.Решить систему уравнений методом обратной матрицы.
|
|
2 x1 |
+ |
3 x2 |
= |
4 |
|
- 2 x1 |
+ |
x2 |
= |
5 |
Решение:
Введем обозначения:
A = |
|
2 |
3 |
|
- матрица А состоит из коэффициентов системы. |
-2 |
1 |
X = |
|
x 1 |
|
- матрица X состоит из переменных, которые необходимо найти. |
x 2 |
B = |
|
4 |
|
- матрица B состоит из столбца свободных членов. |
5 |
E = |
|
1 |
0 |
|
- единичная матрица. |
0 |
1 |
Теперь исходную систему уравнений можно записать в виде матричного уравнения.
A * X = B
Умножим (слева) левую и правую часть уравнения на A-1 - матрицу обратную матрице A.
A -1 * A * X = A -1 * B
Согласно определению обратной матрицы: A -1 * A = E
E * X = A -1 * B
Согласно определению единичной матрицы: E * X = X
X = A -1 * B
задача сводится к нахождению обратной матрицы A -1
|
* |
|
X = A -1 * B = 1 / 8 * |
|
-11 |
|
18 |
X = |
|
-11/8 |
|
9/4 |
Ответ:
x1 = -11/8
x2 = 9/4
Задание 4. Сложить и умножить комплексные числа и .
Решение. Для сложения чисел производим следующие вычисления:
Теперь умножаем:
Ответ.5+5i, 2+11i
Вывод. В процессе выполнения данной работы я научился решать системы линейных уравнений различными методами и освоил правила выполнения арифметических действий с комплексными числами.
