- •1 Области применения:
- •2 Дефектоскопические материалы
- •3 Чувствительность капиллярной метода дефектоскопии
- •4 Методика проведения цветного капиллярного контроля
- •4.1 Подготовка поверхности
- •4.2 Применение пенетранта
- •4.3 Применение проявителя
- •4.4 Оценка результатов контроля
- •4.5 Удаление проявителя (Необязательный этап)
- •4.6 Проведение контроля в специфических условиях
- •5 Контроль методом течеискания
- •6 Методика проведения флуоресцентно-цветного капиллярного контроля
- •6.1 Использование аэрозолей
- •7 Информация о мерах предосторожности при работе с аэрозолями
- •8 Техника безопасности при работе с дефектоскопами
ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра «Теплоэнергетики»
ДИАГНОСТИКА ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
КАПИЛЛЯРНЫЙ МЕТОД НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ
Работа №2
Оренбург2011 г.
Капиллярная дефектоскопия ГОСТ 18442-80 - метод дефектоскопии, основанный на проникновении определенных жидких веществ в поверхностные дефекты изделия под действием капиллярного давления, в результате чего повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного.
Различают люминесцентный и цветной методы капиллярной дефектоскопии.
В большинстве случаев по техническим требованиям необходимо выявлять настолько малые дефекты, что заметить их при визуальном контроле невооруженным глазом практически невозможно. Применение же оптических измерительных приборов, например лупы или микроскопа, не позволяет выявить поверхностные дефекты из-за недостаточной контрастности изображения дефекта на фоне металла и малого поля зрения при больших увеличениях. В таких случаях применяют капиллярный метод контроля.
Капиллярный НК предназначен для обнаружения невидимых или слабовидимых невооруженным глазом поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности (для дефектов типа трещин) и ориентации по поверхности. Этот вид контроля позволяет: диагностировать объекты любых размеров и форм, изготовленные из черных и цветных металлов и сплавов, пластмасс, стекла, керамики, а также других твердых неферромагнитных материалов.
Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта. Капилляр, выходящий на поверхность объекта контроля только с одной стороны, называют поверхностной несплошностью, а соединяющий противоположные стенки объекта контроля, — сквозной. Если поверхностная и сквозная несплошности являются дефектами, то допускается применять вместо них термины "поверхностный дефект" и "сквозной дефект".
Изображение, образованное пенетрантом, в месте располо-жения несплошности и подобное форме сечения у выхода на поверхность объекта контроля, называют индикаторным рисунком (след). Применительно к несплошности типа единичной трещины вместо термина "индикаторный рисунок" допускается применение термина "индикаторный след". Необходимым условием выявления дефектов нарушения сплошности материала типа полостных капиллярным контролем, имеющих выход на поверхность объекта и глубину распространения, значительно превышающую ширину их раскрытия, является относительная их незагрязненность посторонними веществами.
Следует различать максимальную, минимальную и среднюю глубину, длину и раскрытие несплошности. Если не требуется заранее оговаривать, какое из указанных значений размеров имеется в виду, то для исключения недоразумений следует принять термин "преимущественный размер". Для несплошностей типа округлых пор раскрытие равно диаметру несплошности на поверхности объекта.
Все методы капиллярного неразрушающего контроля по характеру взаимодействия проникающих пенетрантов с объектом контроля рассматриваются как молекулярные, что не указывается в определениях для сокращения.
Основные капиллярные методы контроля подразделяют в зависимости от типа проникающего вещества на следующие:
1. Метод проникающих растворов — жидкостный метод капиллярного неразрушающего контроля, основанный на использовании в качестве проникающего вещества жидкого индикаторного раствора.
2. Метод фильтрующихся суспензий - жидкостный метод капиллярного неразрушающего контроля, основанный на использовании в качестве жидкого проникающего вещества индикаторной суспензии, которая образует индикаторный рисунок из отфильтрованных частиц дисперсной фазы.
Капиллярные методы в зависимости от способа выявления индикаторного рисунка подразделяют на люминесцентный, основанный на регистрации контраста люминесцирующего в длинноволновом ультрафиолетовом излучении видимого индикаторного рисунка на фоне поверхности объекта контроля:
Цветной, основанный на регистрации контраста цветного в видимом излучении индикаторного рисунка на фоне поверхности объекта контроля;
Люминесцентно-цветной, основанный на регистрации контраста цветного или люминесцирующего индикаторного рисунка на фоне поверхности объекта контроля в видимом или длинноволновом ультрафиолетовом излучении;
Яркостный, основанный на регистрации контраста в видимом излучении ахроматического рисунка на фоне поверхности объекта контроля.
Комбинированные методы капиллярного неразрушающего контроля сочетают два или более различных по физической сущности методов неразрушающего контроля, один из которых обязательно жидкостный.
Комбинированные капиллярные методы контроля подраз-деляют в зависимости от характера физических полей (излучений) и особенностей их взаимодействия с контроли-руемым объектом.
Капиллярно-электростатический метод основан на обнаружении индикаторного рисунка, образованного скоплением электрически заряженных частиц у поверхностной или сквозной несплошности неэлектропроводящего объекта, заполненного ионогенным пенетрантом.
Капиллярно-электроиндуктивный метод основан на электроиндуктивном обнаружении электропроводящего индикаторного пенетранта в поверхностных и сквозных несплошностях неэлектропроводящего объекта.
Капиллярно-магнитопорошковыЙ метод основан на обнаружении комплексного индикаторного рисунка, обра-зованного пенетрантом и ферромагнитным порошком, при контроле намагниченного объекта.
Жидкостный капилляр но-радиационный метод излучения основан на регистрации ионизирующего излучения соот-ветствующего пенетранта в поверхностных и сквозных несплошностях, а капиллярно-радиационный метод поглощения — на регистрации поглощения ионизирующего излучения соответствующим пенетрантом в поверхностных и сквозных несплошностях объекта контроля.
1 Области применения:
- авиастроение
- автомобилестроение
- машиностроение
- судостроение
- строительство ядерных реакторов
- металлургия
- электротехника
- медицина
- котло- и приборостроение
- литейное производство
- сварочная техника
2 Дефектоскопические материалы
Капиллярный дефектоскопический материал применяют при капиллярном неразрушающем контроле и используют для пропитки, нейтрализации или удаления избытка проникающего вещества с поверхности и проявления его остатка с целью получения первичной информации о наличии несплошности в объекте контроля.
Дефектоскопические материалы выбирают в зависимости от требований, предъявляемых к объекту контроля, его состояния и условий контроля. Их укомплектовывают в целевые наборы, в которые входят полностью или частично взаимообусловленные совместимые дефектоскопические материалы, приведенные ниже.
Набор дефектоскопических материалов — взаимозависимое целевое сочетание дефектоскопических материалов: индика-торного пенетранта, проявителя, очистителя и гасителя.
Индикаторный пенетрант (пенетрант) И — капиллярный дефектоскопический материал, обладающий способностью про-никать в несплошности объекта контроля и индицировать их.
Очиститель от пенетранта (очиститель) М — капиллярный дефектоскопический материал, предназначенный для удаления индикаторного пенетранта с поверхности объекта контроля самостоятельно или в сочетании с органическим растворителем или водой.
Гаситель пенетранта (гаситель) Г — капиллярный дефекто-скопический материал, предназначенный для гашения люминесценции или цвета остатков соответствующих индика-торных пенетрантов на поверхности объекта контроля.
Проявитель пенетранта (проявитель) П — капиллярный дефектоскопический материал, предназначенный для извлечения индикаторного пенетранта из капиллярной полости несплош-ности с целью образования четкого индикаторного рисунка и создания контрастирующего с ним фона.
Специализированные составы, предназначенные для выявления поверхностных дефектов методами капиллярной дефектоскопии, имеют следующие условные групповые обозначения.
И — цветные пенетранты, имеющие характерный цветовой тон при наблюдении в видимом излучении,
l — люминесцентные пенетранты, излучающие свет под воздействием длинноволнового ультрафиолетового излучения.
И3 — люминесцентно-цветные пенетранты, имеющие характерный цветовой тон при наблюдении в видимом излучении и люминесцирующие под воздействием длинно-волнового ультрафиолетового излучения.
Ц — химические активные пенетранты, предназначенные для химического взаимодействия с соответствующими проявителями для образования специфического индикаторного следа, меняющего цвет, способность люминесцировать или образовывать продукты реакции, дающие информацию о наличии несплошностей.
И5 — ахроматические пенетранты, которые под воздействием видимого излучения дают черное или серое показание.
И6 — прочие пенетранты.
М1 — органические очистители.
Mj — водяные очистители
М3 — прочие очистители
Г — гасители ленетанта.
П — порошковые проявители, сорбционные, представляющие собой сухой, преимущественно белый мелкодисперсный сорбент, поглощающий ленетрант.
П2 - суспензионные проявители, сорбционные, представляющие собой белый сорбент, диспергированный в летучих растворителях, воде или быстросохнущих смесях, поглощающие пенетрант.
П3 — красочные проявители (лаки), диффузионные, состоящие из пигментированного или бесцветного быстросохнущего жидкого раствора, связывающие, поглощающие пенетрант.
П4 — пленочные проявители, диффузионные, представляющие собой бесцветную или белую накладную пленку с проявляющим липким слоем, поглощающим пенетрант.
П5 — прочие проявители.
Очистители и гасители в зависимости от характера взаимодействия с индикаторным пенетраитом подразделяют на растворяющие, самоэмульгирующие и эмульгирующие при внешнем воздействии.
Индикаторные пенетранты подразделяют в зависимости от физического состояния и светоколористических признаков.
В зависимости от физических свойств бывают различные пенетранты.
Магнитный пенетрант является суспензией, частицы твердой фазы которой имеют ферромагнитные свойства, а жидкий носитель представляет собой молекулярную или коллоидную дисперсию люминофора, красителя или другого индикатора,
Электропроводящий пенетрант имеет нормированную электрическую проводимость.
Ионизирующий пенетрант испускает ионизирующее излучение. Поглощающий пенетрант поглощает ионизирующее излучение.
Комбинированный пенетрант сочетает свойства двух или более индикаторных пенетрантов.
По технологическим признакам пенетранты можно разделить следующим образом.
Органосмываемый пенетрант смывается с поверхности объекта контроля органическими безводными антикорро-зионными составами: растворителями, маслами или их смесями.
Водосмываемый пенетраит смывается водой или водосодержащими составами.
Пенетрант последующего эмульгирования образует эмульсию в воде, очищающей поверхность объекта контроля, после его предварительного взаимодействия с очистителем от пенетранта или ПАВ.
Обесцвечивающий пенетрант, особенность которого заключается в том, что люминесценция или цвет его уничтожается специально подобранным гасителем.
Проявители подразделяют в зависимости от состояния.
Проявитель разделяют в зависимости от характера взаимодействия его с индикаторным пенетрантом.
Химически пассивный проявитель не меняет колористические свойства индикаторного пенетранта.
Рекомендации по контролю качества материалов
Данные рекомендации распространяются на материалы для капиллярной дефектоскопии и контроля параметров .
Плотность
вещества определяется как отношение
массы т к объему т.е.
=
М/ V.
Пикнометрический метод. Плотность
определяется при температуре 20 °С и
указывается в г/см3.
Вязкость — это свойство жидкого вещества к восприятию сдвигающего напряжения t, вызываемого деформацией сдвига и зависящего от градиента среза D.
Кинематическая вязкость — это отношение динамической вязкости t\ к плотности р, т.е. v = ц /р. Она определяется на конечных точках соответствующего температурного диапазона и выражается в м2 /с.
Применяют капиллярный вискозиметр по Уббелоде на температурный диапазон 10 — 100 °С, а также вискозиметр с падающим шариком по Хапплеру на температурный диапазон - 60 +150 °С.
Поверхностное натяжение — это напряжение на поверхности, стремящееся уменьшить данную поверхность. Оно измеряется в Н/м при температуре 20° С. Применяют тензиометр с пластиной, дугой или кольцом.
Смачиваемость — это адгезия жидкости на поверхности твердого тела, т.е. образование малого контактного угла (< 90° ) между поверхностью жидкости и поверхностью твердого тела, В случае полного смачивания этот контактный угол равен 0° .
Плоская пластина из стекла, стали, алюминия, латуни площадью 100 х 100 мм тщательно очищается, например, щелочным промывочным средством, при помощи целлюлозной бумаги с использованием трихлорэтилена, этилалкоголя, ацетона или окунанием в ацетон, обезжиривается и сушится. Шероховатось шлифованных или имеющихся в состоянии поставки металлических пластин должна составлять по показателю Ra = 3 - 5 мкм. На середину горизонтально установленной пластины наносится 0,04 мл пенетранта и определяется средний диаметр смачиваемой площади (в качестве меры смачиваемости) в зависимости от времени.
Проникающая способность — это свойство пенетрантов к проникновению в капиллярные несплошности. Скорость проникновения пенетрантов может быть определена приближенно путем сложения двух мерительных плиток, при помощи стяжного устройства устанавливается щель шириной в несколько мкм. На верхнюю сторону щели напыляется проявитель, а на нижнюю сторону наносится капля пенетранта. Измеряется время от момента нанесения пенетранта до первых признаков окраски проявителя.
Выявляемость дефектов указывает на то, какой определенный наименьший поверхностный дефект (например, ширина трещины) еще визуализируется данным набором материалов. Она определяется на естественных или искусственных дефектах при температуре 20° С, причем необходимо применять установленную заводом-изготовителем технологию контроля. Для испытаний используют стандартные образцы.
Образец выполняют из измерительных плиток так, что последние образуют калиброванную клинообразную капиллярную щель, как описано выше при испытании проникающей способности пенетранта.
Пластана из азотированной стали, деформированная шариком.
Изготовляется пластина из азотируемой стали размерами 50 х50 х 3 мм, поверхность которой шлифуется так, чтобы шероховатость составила Ra = 3 - 4 мкм. В середине сверлят проходное отверстие диаметром 5 мм, фаска с обеих сторон 60 °. После этого пластина азотируется (глубина азотирования 0,2-0,7 мм), очищается от окалины мелкой шлифовальной бумагой и кладется на стальное кольцо (внутренний диаметр 30 мм, высота 25 мм, наружный диаметр около 60 мм). На противоположной стороне 20-миллиметровый стальной шар вдавливается с помощью испытательной машины в отверстие силой около 2—3 кН, пока треск не укажет на образование трещин в зоне растяжения. Трещины измеряют под микроскопом. Путем повторного надавливания на переднюю или обратную сторону плитки можно управлять раскрытием трещин. Ширина трещины определяется с помощью растрового сканирующего, электронного микроскопа при необходимом увеличении. Глубина трещин определяется по поперечным шлифам.
Капилляр (трещина), выходящий на поверхность объекта контроля только с одной стороны, называют поверхностной несплошностью, а соединяющий противоположные стенки объекта контроля, - сквозной. Если поверхностная и сквозная несплошности являются дефектами, то допускается применять вместо них термины «поверхностный дефект» и «сквозной дефект». Изображение, образованное пенетрантом в месте расположения несплошности и подобное форме сечения у выхода на поверхность объекта контроля, называют индикаторным рисунком, или индикакацией.
Применительно к несплошности типа единичной трещины вместо термина «индикация» допускается применение термина «индикаторный след». Глубина несплошности - размер несплошности в направлении внутрь объекта контроля от его поверхности. Длина несплошности - продольный размер несплошности на поверхности объекта. Раскрытие несплошности - поперечный размер несплошности у ее выхода на поверхность объекта контроля.
Необходимым условием надежного выявления капиллярным методом дефектов, имеющих выход на поверхность объекта, является относительная их незагрязнённость посторонними веществами, а также глубина распространения, значительно превышающая ширину их раскрытия (минимум 10/1). Для очистки поверхности перед нанесением пенетранта используют очиститель.
