- •Введение
- •Глава 1. Методы воздействия, применяемые на первой стадии разработки
- •Химические методы воздействия на призабойную зону скважины Кислотная обработка пласта
- •Микробиологическая обработка скважин
- •Микробиологическая обработка скважин на примере депарафинизации
- •Механические методы воздействия на призабойную зону скважины Ручные лебедки при депарафинизации
- •Применение защитных покрытий для борьбы с аспо
- •Тепловые методы воздействия на призабойную зону скважины Системы нагрева с помощью тенов для восстановления производительности эксплуатационных скважин
- •Системы индукционного нагрева для восстановления производительности эксплуатационных нефтегазовых скважин
- •Аппаратура индукционного обогрева устьевого оборудования
- •Физические методы воздействия на призабойную зону скважины Магнитные активаторы
- •Кварцевый депарафинизатор
- •Глава 2. Методы, используемые на второй и третьей стадиях разработки месторождения
- •5. Группа комбинированных методов.
- •Тепловые методы воздействия на призабойную зону скважины Паротепловая и тепловая обработки
- •Кривые 1, 2 - для скважин Арланского месторождения, остальные - для Ишимбайского
- •Условные обозначения: а - пар; б - вода; в – нефть
- •Внутрипластовое горение
- •(По р.Х. Муслимову. 1999):
- •Метод вытеснения нефти из пластов горячей водой
- •Физические методы увеличения дебита скважин
- •Гидравлический разрыв пласта
- •Гидропескоструйная перфорация
- •Торпедирование
- •Горизонтальные скважины
- •Электромагнитное воздействие
- •Волновое воздействие на пласт
- •Газовые методы обработки пласта Закачка воздуха в пласт
- •Методы смешивающегося вытеснения
- •О применении газовых методов концерном Shell
- •Заводнение пластов
- •Законтурное заводнение
- •Приконтурное заводнение
- •Внутриконтурное заводнение
- •Система заводнения с разрезанием залежи на отдельные площади
- •Очаговое и избирательное заводнение
- •Сводовое заводнение
- •Кольцевое заводнение
- •Очаговое заводнение
- •Избирательное заводнение
- •Площадное заводнение
- •1, 2 И 4 – соответственно пропластка а, б и в; 3 – линза в пропластке; 5 – непроницаемые пропластки
- •Разрабатываемого при трехрядной схеме расположения скважин
- •Регулирование отборов гидродинамическими методами Интегрированные технологии
- •Барьерное заводнение на газонефтяных залежах
- •Нестационарное (циклическое) заводнение
- •Форсированный отбор жидкости
- •Система дренажных стволов как метод увеличения дебита скважины и нефтеотдачи пласта
- •Инновационное заводнение, применяемое концерном Shell Заводнение с низкой минерализацией
- •Новые возможности для применения мун на континентальном шельфе
- •Химические методы обработки пласта Закачка в пласт воды, обработанной пав
- •О резком увеличении производительности с помощью полимерного заводнения в Омане
- •Закачка в пласт углекислоты
- •Закачка в пласт теплоносителя
- •Вытеснение нефти мицеллярными растворами
- •Микробиологические методы повышения нефтеотдачи
- •Основные критерии выбора участков, на которых возможно и эффективно применение метода:
- •Влияние температуры воды на движение жидкости в пористых средах
- •Исследования температурных изменений в пластах при заводнении
- •(В период восстановления температуры)
- •Промысловые исследования влияния температурных изменений на фильтрацию парафинистой нефти в коллекторе
- •Опытно-промышленное нагнетание горячей воды
- •Применение в работе исследования влияния температурных изменений на фильтрацию парафинистой нефти в коллекторе
- •Заключение Эффективность методов применения методов увеличения нефтеотдачи (мун)
- •Опыт применения методов увеличения нефтеотдачи (мун) в мире
- •Список литературы
Химические методы воздействия на призабойную зону скважины Кислотная обработка пласта
Кислотная обработка (КО) — это метод увеличения проницаемости призабойной зоны скважины путем растворения составных частиц породы пласта, а также инородных частиц, которыми загрязнены породы. Впервые кислоту использовали для воздействия на пласт в 1895 г. При этом удавалось добиться значительного увеличения объемов добычи, но оказалось, что кислотные растворы вызывают чрезвычайно сильную коррозию скважинного оборудования и этот метод был забыт. Разработка в 1932 г. химических ингибиторов, позволяющих растворам кислот избирательно вступать в реакцию с породой, не поражая скважинного оборудования, возродила интерес к кислотной обработке скважин. Благодаря отличным результатам, полученным с помощью улучшенной кислотной методики воздействия, применение этой технологии расширилось и в настоящее время она является стандартной методикой восстановления скважин.
Кислотную обработку применяют для увеличения проницаемости карбонатных и песчаных коллекторов в нефтегазодобывающих и нагнетательных скважинах в период освоения, во время эксплуатации и ремонтных работ.
Для обработки карбонатных коллекторов преимущественно применяют соляно-кислотные растворы (СКР), а для песчаных коллекторов после СКР закачивают глинокислотные растворы (ГКР). Такие виды обработки называются соответственно соляно- (СКО) и глинокислотными (ГКО).
Химически активной основой перечисленных кислотных растворов (КР) является соответственно соляная кислота (10 — 30 % НС1), так как она недорога и не оставляет нерастворимых продуктов реакции и смесь соляной (10—15 % НС1) и плавиковой (1-5 % НР) кислот.
Физические и химические характеристики пластовых пород часто влияют на результаты интенсификации скважины с помощью химической обработки. В некоторых случаях специальные добавки улучшают действие кислоты или предупреждают осложнения, связанные с очисткой при извлечении продуктов реакции:
- ингибиторы: ингибиторы вводят в раствор кислоты для замедления скорости ее реакции с металлами. Они нужны во избежание повреждений обсадной и насосно-компрессорной колонн, насосов, клапанов и другого оборудования. Ингибиторы не прекращают реакцию между металлом и кислотой полностью, но сокращают потери металла на 95—98%. Эти химикаты не влияют на скорость реакции с известняком, доломитом или растворимыми в кислоте сланцами. В настоящее время кислота, применяемая для такой обработки, всегда смешивается с каким-либо ингибитором. Один из видов ингибиторов — органические, такие как азот- или серосодержащие органические вещества, второй — неорганические, главным образом на основе меди. Раньше пользовались мышьяком, но сейчас от него отказались.
- активирующие добавки: активированная кислота представляет собой ингибированную смесь соляной и плавиковой (фтористоводородной) кислот. Фторид ускоряет реакцию кислоты и позволяет кислоте растворять минералы, встречающиеся в доломите, которые иначе не растворяются. В кристаллических структурах доломита часто присутствуют межкристаллические пленки оксида кремния, не растворимые в соляной кислоте. В таком случае кислота не может вступить в контакт с растворимыми участками породы. Плавиковая кислота растворяет оксид кремния и дает соляной кислоте возможность проникнуть к растворимым участкам.
- ПАВ (детергенты) - это химические добавки, снижающие поверхностное натяжение раствора. Эффективность кислотного раствора улучшается при добавке необходимого детергента. Введение детергента помогает кислоте проникать в микроскопические поры горной породы. Повышенная проникающая способность кислоты приводит к большей глубине проникновения в пласт и улучшенному дренированию после обработки. Помимо этого детергенты позволяют кислоте проникать в пленки, окружающие породу и выстилающие поры, обеспечивая контакт кислоты с породой и ее растворение. Детергенты облегчают возвращение отработанной кислоты после обработки. Важно, чтобы не оставалась кислота, которая закупоривает протоки. Детергент обеспечивает более полное смачивание, он также снижает сопротивление продвижения кислоты. Отработанная кислота обычно возвращается сквозь обработанный участок. Эта операция особенно важна в скважинах с низким давлением. Преимущество от использования детергентов также заключается в их деэмульгирующем действии. Детергенты ингибируют возникновение эмульсий или разрушают уже образовавшиеся. Применение детергентов в кислотных растворах приводит к удалению значительных количеств рассола вместе с отработанной кислотой. Таким образом пласт освобождается от загрязнений, которые могли бы ограничить продуктивность скважины.
- деэмульгаторы: многие из компонентов, встречающихся в природной сырой нефти, обладают эмульгирующими и стабилизирующими свойствами. Когда сырая нефть перемешивается с кислотой (или отработанной кислотой), могут образовываться эмульсии. В некоторых случаях они закупоривают пласт, снижая или даже полностью прекращая добычу из скважины. Деэмульгаторы, добавляемые в раствор кислоты, являются химическими агентами, препятствующими естественному эмульгированию сырой нефти.
- добавки для контроля силикатов: силикатные компоненты — глины и илистые отложения — содержатся в большинстве известняков и доломитов. Для силикатов характерно набухание в отработанной кислоте. Естественно, эта реакция нежелательна. Набухшие частицы могут закупорить протоки в пласте и снизить скорость добычи. Добавки для контроля силикатов представляют собой химикаты, предназначенные для предотвращения поглощения воды свободными частицами силикатов. Некоторые вещества препятствуют расходованию растворов кислоты за пределами интервала pH, в котором частицы силикатов занимают наименьший возможный объем. Другие химические добавки заставляют частицы силикатов сжиматься, гак как вытесняют поглощенную ими жидкость, заменяя ее водоотталкивающей органической пленкой. Подбор правильных добавок для контроля силикатов позволяет регулировать закупоривание пласта, применять более низкие давления обработки, сокращать время очистки и уменьшать возникновение эмульсий, стабилизированных частицами.
- горячая кислота и добавки: горячие растворы кислоты благотворно влияют на скважины, где пластовые породы или отложения в стволе скважины растворяются медленно и с трудом удаляются. При нагревании кислоты время реакции сокращается и достигается большая эффективность обработки. Такая обработка особенно ценна на скважинах, где минеральные отложения на фильтрах и оборудовании скважины мешают добыче. Она также эффективна для повышения нефтеотдачи скважин, частично закупоренных малорастворимыми минералами. Иногда одновременно с горячей кислотой применяются органические и углеводородные растворители. Сочетание высокой температуры и действия растворителей эффективно, когда существенные отложения, затрудняющие добычу, накапливаются в протоках пластов.
Сначала в продуктивную зону закачивается загущенное масло с суспендированными крупинками магния. Затем подается обычный раствор соляной кислоты, содержащий все необходимые добавки. После протекания реакции кислоты и магния температура пласта может повыситься до 200— 300°F (95—150°С). Пласт обычно быстро промывается благодаря комбинированному действию кислоты на минеральные отложения и тепла вместе с растворителем на отложения парафина, асфальта и смол. Кроме того, водород, образовавшийся при реакции магния с кислотой, вызывает турбулентность, выбивающую частицы, застрявшие в протоках, что тоже способствует очистке.
- «замедленная» кислота: в некоторых высокореакционноспособных породах скорость реакции кислоты замедляют, чтобы увеличить проникающую способность, вместо того, чтобы тратить большую ее часть в непосредственной близости от ствола скважины. Разнообразные смолы, загустители и другие ингибиторы замедляют реакцию кислоты и обеспечивают более глубокое проникновение в пласт. Некоторые замедленные кислоты содержат вещества, образующие на породе пленку после протекания первичной реакции между кислотой и породой. В других случаях высокая вязкость загущенной кислоты дает искомый результат. Кислотно-нефтяные эмульсии с контролируемой стабильностью (гарантируюшей разрушение по истечении заданного времени) также применились для достижения замедленного действия кислоты. Во многих случаях кислота не попадает в поры малых размеров и под давлением проникает только в самые крупные. В результате поверхность контакта с кислотой ограничивается и достигается большая глубина проникновения до полного расходования кислоты. Часто доза замедленной кислоты используется для создания протоков, расходящихся от ствола скважины. За такой обработкой следует дополнительная порция соляной кислоты для увеличения новообразованных протоков. Достоинство использования замедленной кислоты состоит в том, что область, непосредственно дренируемая скважиной, сильно увеличивается и достигается максимальный положительный эффект. Кроме того, для удаления продуктов реакции после обработки требуется меньшее пластовое давление.
- удержание железа: в нагнетательных скважинах для вторичной добычи и повышения нефтеотдачи пластов или для утилизации рассола часто происходит закупоривание пластовых протоков. Для предотвращения этого используют соляную кислоту. Однако растворенные соединения железа после выработки кислоты оседают в виде объемистого гелеобразного гидроксида. Если не предпринимать защитных мер, может произойти серьезное закупоривание. Химикаты, называемые комплексообразователями, химически связывают железо в комплексные ионы. В большинстве случаев осаждение растворенного железа в форме гидроксида полностью прекращается.
- кислота для удаления бурового раствора: кислота, используемая для удаления бурового раствора, представляет собой смесь соляной и плавиковой кислот, содержащую соответствующие ингибиторы, детергенты и деэмульгаторы. Такая кислота называется растворной кислотой, она растворяет глины, обычно применяемые в буровых растворах. Растворная кислота удаляет корку бурового раствора с поверхности продуктивного горизонта в процессе заканчивания или перед капитальным ремонтом. Она также удаляет просочившийся буровой раствор, который может заблокировать протоки в пласте. Кислота разрушает отложения глины, оставляя поверхность продуктивной зоны свободной и чистой. Кроме того, растворная кислота увеличивает проницаемость песчаников. Если лабораторные испытания показывают, что растворимость породы в растворной кислоте выше, чем в других видах кислоты, рекомендуется этот тип обработки. Обработке растворной кислотой может предшествовать промывка 15-процентной соляной кислотой с ингибитором, детергентом и деэмульгатором. При этой операции с поверхности продуктивной зоны удаляются все легкорастворимые материалы. Это гарантирует, что обработка растворной кислотой воздействует именно на малорастворимые участки породы.
- очищающие растворы: очищающие растворы применяют перед гидроразрывом пласта, цементированием и кислотной обработкой. Операция очистки обеспечивает равномерность распределения воздействия при интенсификации пласта по всей высоте продуктивной зоны. Очищающие растворы представляют собой кислотные смеси, не содержащие фторидов.
- безводная кислота: для обработки маслорастворимой безводной кислотой используют безводную уксусную кислоту. Уксусная кислота смешивается с углеводородным растворителем и вводится в горную породу так же, как и другие кислоты. Она не вступает в реакцию с породой до тех пор, пока в породе не встретится вода. Малое количество реликтовой воды в порах камня позволяет уксусной кислоте вступить в реакцию с карбонатами в пласте.
Для проведения КО в скважину спускают 62 — 73-мм НКТ в большинстве случаев к нижнему перфорационному отверстию обрабатываемого интервала. Устье скважины оборудуют арматурой для обвязывания труб с колонной и обратным клапаном на входе в полость НКТ, Напорная сторона насосного агрегата ЦА-320, 4АН-700 или другого агрегата обвязывается через обратный клапан с полостью НКТ, а принимающая — с кислотовозом (Аз-ЗОА) и автоцистернами (4ЦР, АП), в которых транспортируются кислотные растворы и продавливающие жидкости. Нагнетательные трубопроводы спрессовываются давлением, в 1,5 раза превышающим ожидаемое давление нагнетания жидкостей в скважину.
Наиболее простая схема КО предусматривает подъем глубинного оборудования из скважины, спуск НКТ с промывкой к забою и поднятие башмака труб к интервалу перфорации. В скважину закачивают прямой циркуляцией КР в объеме НКТ, закрывают затрубную задвижку, нагнетают остаток запланированного объема кислоты и продавливающей жидкости. После нагнетания всего объема жидкостей закрывают буферную задвижку скважины, отсоединяют насосный агрегат и другую спецтехнику и начинают очистку цризабойной зоны от продуктов реакции (см.рис.1.9).
Рисунок 1.9 Технология проведения простой кислотной обработки.
а- закачка нефти до переливания в отвод затрубного пространства, б- закачка раствора кислоты, в- закачка продавочной жидкости, г- остановка скважины на реагирование
В насосных скважинах процесс обычно отличается. После продавливания КР в пласт и снижения давления поднимают НКТ, спускают глубинное оборудование и извлекают продукты реакции насосом, установив рациональный режим эксплуатации. Несвоевременное извлечение продуктов реакции из пласта часто обусловливает уменьшение эффективности СКО и особенно ГКО.
Когда кислота закачивается в пласт, происходит химическая реакция. Механизм кислотного воздействия на коллектор рассмотрим с позиций степени растворимости пород и скорости реакции, образования продуктов реакции и изменения проницаемости пород после обработки. Считают, что растворимость пород, которые подвергаются КО, должна обеспечить увеличение пористости не менее чем на 10 %, а растворимость инородных материалов, загрязняющих поры и трещины пласта, должна быть наиболее полной (хотя бы на 50 %). Исходя из таких принципов, подбирают состав активной части растворов.
При планировании КО необходимо знать растворимость пород в кислоте, Например, известно, что 1 м3 различных кислот растворяет: 15%-ной НС1 — 200 кг известняка СаСО3 или около 70 кг легкорастворимой части эоценового песчаника; 4%-ной НР - 48 кг каолина; 10%-ной НС1 с 1%-ной НР -70 кг глинопорошка, состоящего из гидрослюды и монтмориллонита.
Приведенные данные используют при расчетах объема кислотных растворов и оценках возможной глубины проникновения активной части кислоты в пласт. Продукты реакции вызывают снижение проницаемости пород после КО, если они откладываются в поровом пространстве виде геля либо твердой породы или взаимодействуют с пластовыми флюидами, образуя осадки или эмульсии.
Во время взаимодействия соляной кислоты образуются:
с карбонатами пород — водорастворимые соли СаС12, МдС12, газ СО2, вода;
с окисями железа и его соединениями в составе пород (например, в виде сидерита РеСО3) — хлорное железо РеС13, которое после нейтрализации кислоты гидролизирует в виде осадка Ре(ОН)3, способного закупоривать поры;
с сульфатами кальция в составе пород с температурой до 66 °С — осадок гипса;
с окисью кремния в глинах — осадок, гель кремниевой кислоты;
с окисью щелочных и щелочно-земельных металлов в глинах — соответствующие соли.
Таким образом, во время реакции СКР образуются растворимые и временно растворимые продукты, поэтому технология обработки СКР должна быть такой, чтобы предупредить выпадение нерастворимых осадков.
Во время взаимодействия глинокислоты образуются:
с кварцем — газоподобный фторид 51Р4, а после снижения кислотности — гель кремневой кислоты 31(ОН)4, который закупоривает поры;
с алюмосиликатами (глинами) — газоподобный фторид 51Р4;
с кварцем и алюминием — параллельно с тетра фторидом кремния 81Р4 образуется гексафторокремниевая кислота Н231Р6, соли которой Ха231Р6 и К231Р6 выпадают в осадок.
Известно, что реакция ГКР с глинами проходит значительно быстрее, чем с кварцем, поэтому в песчаниках преимущественно растворяются глинисто-карбонатный цемент и частицы, загрязнившие пласт, а зерна кварца (матрицы породы) — значительно меньше.
Часто вместо НР для получения ГКР применяют БФФА (бифторид аммония КН4НР2 + МН4Р). Например, для получения раствора (12 % НС1 + 3 НР) применяют смесь (16 % НС1 н- 3 % БФФА). Наличие в растворе иона ХН4 увеличивает растворимость продуктов реакции НР с силикатными породами, и поэтому для ГКР лучше использовать БФФА.
Для обработки песчаников применяют также смесь 20%-ной Н231Р6 + 24%-ной НС1 в соотношении 1:1, которая растворяет песчаники и глины подобно глинокислоте.
Таким образом, во время реакций ГКР с силикатными породами образуются временно растворимые и нерастворимые продукты, способные закупоривать поровое пространство, Наиболее важно — не допустить закупоривания пласта продуктами реакции после ГКО.
Изменение проницаемости пород после фильтрации сквозь них кислотных растворов зависит от химического и минералогического составов, структуры порового пространства, режимов фильтрации и термобарических условий прохождения реакции. Например, после обработки эоценовых песчаников с карбонатностью Ск = 2+9 % излишком СКР (10—15 % НС1) проницаемость образцов пород возрастает в 2 — 7 раз. Во время обработки карбонатных поровых пород возрастание проницаемости практически не ограничено.
На выбор рациональных режимов обработки и технологию работ влияет скорость реакции КР с породами, которая зависит от начальной концентрации кислоты, термобарических условий прохождения реакции в пласте, активной поверхности породы, контактирующей с кислотой, и гидродинамических условий прохождения реакции.
Известно, что за одинаковые промежутки времени степень нейтрализации кислоты породой не зависит от начальной концентрации. Таким образом, при иных равных условиях за одинаковый промежуток времени вдвое снижается концентрация кислоты (от 20 до 10 % или от 12 до 6 %). Можно было бы предположить, что, применяя большую начальную концентрацию кислоты, можно увеличить глубину обработки пласта. Однако поскольку скорость реакции в поровой среде велика, это практически не влияет на глубину обработки.
Увеличение температуры пласта на 10 °С обусловливает возрастание скорости приблизительно в 2 раза. При увеличении давления реакция с соляной кислотой замедляется, а с плавиковой — ускоряется.
Значительное влияние на скорость реакции имеет отношение реагирующей поверхности породы к объему кислоты в порах, которое резко увеличивается при уменьшении размера пор. Например, в канале с диаметром 1 мм это отношение
равно 40, а в порах с диаметром 20 мкм — 2000 мм. Поэтому в поровых коллекторах наблюдаем резкое увеличение скорости нейтрализации. Например, расчетная глубина проникновения в известняк активной соляной кислоты в каналах с диаметром 1 см равна 600 см, с диаметром 1 мм — 20 см, а в поровых каналах размером 10 мкм — 5 см при других равных условиях.
Итак, нейтрализация кислоты в поровом пространстве происходит во время нагнетания ее в пласт, поэтому выдерживания для реагирования не требуется.
Влияние гидродинамических условий фильтрации кислоты на скорость ее нейтрализации ощутимо лишь в больших каналах или трещинах. С увеличением расхода кислоты глубина обработки пласта несколько возрастает. Экспериментально доказано, что при таких условиях рост расхода кислоты практически не увеличивает глубины обработки песчаного пласта.
Перед проектированием кислотной обработки следует обосновать выбор скважины, избрать рецептуру и объем кислотных растворов, определить расход и давление жидкости во время закачивания в пласт, избрать рецептуру и рассчитать объем продавливающей жидкости, определить время пребывания кислоты в пласте и способ очистки призабойной зоны от продуктов реакции.
Выбор рецептуры КР проводят с учетом химического и минералогического состава пород, их фильтрационных свойств, химического состава и свойств пластовых флюидов, пластовой температуры, причин загрязнения призабойной зоны.
Типичный КР состоит из активной части (НС1, НС1 + + НР), растворителя, ингибитора коррозии, стабилизатора и интенсификатора.
Кислоту разводят обычной водой. Однако во время КО полимиктовых песчано-алевролитовых влагоемких пород Западной Сибири хорошие результаты получают при приготовлении КР на ацетоне, если обводненность скважины меньше 10 %. Во время обработки газовых и газоконденсатных скважин полезно приготавливать КР на спирте (метанол, изопропиловый спирт). Применение названных углеводородных растворителей содействует обезвоживанию пород и уменьшает поверхностное натяжение на границе разделения фаз.
Для уменьшения коррозии используются ингибиторы, эффективность ингибиторов коррозии оценивается коэффициентом торможения коррозии Кт к, который представляет собой соотношение количеств растворенного металла в неингибированной кислоте к количеству растворенного в ингибированной. При пластовых температурах до 100 °С достаточно обеспечить значение Кт к = 20. Если температура 15%-ной НС1 во время прохождения кислоты по НКТ достигает 100 °С, то растворяется 3500 г/(мл/ч) железа, а применение ингибитора " Север-1" уменьшает растворимость до 176 г/(м3/ч). Ингибиторы имеют температурные ограничения и зависят от концентрации НС1. Например, ингибитор катапин КИ-1 можно применять для 110 °С.
Стабилизаторы предотвращают выпадение осадка в виде гидроокиси железа. Наиболее часто для стабилизации раствора используют органические кислоты, образующие с железом растворимые комплексы. Количество стабилизаторов обычно составляет 0,3 %. При таких условиях стабилизирующие свойства зависят от температуры. Например, для 2%-ной уксусной кислоты до Т < 60 °С; для 0,5-ной лимонной кислоты до 90 °С; для 0,65%-ной КРАСТ до 140 °С. Увеличение значения стабилизатора не повышает стабилизирующие свойства. Отметим, что стабилизация КР необходима для проницаемости меньше 0,01 мкм2.
Интенсификаторы применяют, чтобы улучшить фильтрацию КР в породе, избежать блокирования призабойной зоны продуктами реакции и облегчить их извлечение на поверхность. Для КО нефтедобывающих скважин лучше применять катионоактивные ПАВ, которые снижают поверхностное натяжение на границе нефть — продукты реакции и гидрофобизируют породы (катапины, АНП-2 и др.) в количестве 0,3 — 0,5 %. Вместо катионоактивных ПАВ можно применять неио- ногенные ПАВ (превоцел, ОП-10, неонол и др.), но их действие не способствует гидрофобизации породы. Добавлять ПАВ необходимо, если нефть содержит более 2 % асфалътенов или более 6 % смол.
При КО водонагнетательных скважин рекомендуется добавлять 0,3 — 0,5 % неиногенных ПАВ, которые гидрофобизи-руют породу.
Объемы кислотных растворов. Для планирования объема КР в настоящее время в основном применяют эмпирический подход. Если КО предназначены для растворения пород и примесей, занесенных в пласт в процессе бурения или ремонтов, то во время первой КО обычно закачивают КР 0,5 м3/м поглощающей толщины пласта, при второй — 1 м3/м. Если КО предназначена для извлечения карбонатных солей, откладывающихся во время эксплуатации нефтяных скважин, то увеличение объема КР при последовательно проводимых СКО необязательно. Если обработку проводят путем закачивания в пласт стабильных углеводородных кислотных эмульсий, то объем эмульсий равен произведению расхода эмульсии на длительность ее распада. Обычно стабильность эмульсии при пластовой температуре составляет 30 — 60 мин.
Во время КО чаще всего применяют не менее 6—12 м3 КР и только иногда 24 м3 и более.
Давление на устье скважины во время нагнетания КР в пласт при КО поровых коллекторов (особенно терригенных) не должно превышать давления разрыва пласта (раскрытие глубоких трещин), чтобы обеспечить равномерное проникновение КР в пласт. Для КО трещинных коллекторов (особенно карбонатных) давление на обсадную колонну должно быть максимально допустимым, что дает возможность достичь наибольшей глубины обработки пласта.
Расход жидкости во время нагнетания в пласт для обработки карбонатных трещинных коллекторов должен быть максимально возможным в пределах технически допустимых давлений. Во время обработки поровых коллекторов (терригенных), когда приемистость скважины обычно мала, расход КР преимущественно небольшой, но это незначительно влияет на глубину проникновения активной кислоты (глубину обработки).
Объем продавливающей жидкости для обработки карбонатных коллекторов рассчитывают так, чтобы вытеснить весь КР за пределы эксплуатационной колонны в пласт.
Во время обработки карбонизированных терригенных коллекторов используют кроме продавливающей жидкости еще и вытесняющую жидкость. Постепенное увеличение объема КР в пласте приводит к неравномерному растворению глинисто-карбонатного материала пласта в радиальном направлении, Формируется зона от стенки скважины вплоть до радиуса проникновения фронта активной кислоты и наблюдается полное удаление растворенного материала. За ней формируются еще две кольцевые зоны — узкая и широкая вплоть до радиуса фронта проникновения нейтрализованного КР. Чтобы полностью использовать химическую активность кислоты в пласте и предупредить выход КР с начальной концентрацией в ствол скважины и на поверхность во время дренирования пласта, нужно закачать в него вытесняющую жидкость, объем которой равняется 30 — 50 % объема кислотного раствора.
Вытесняющая жидкость не должна снижать проницаемость породы. При этом применяют водные растворы ПАВ, спиртов и т.п. в зависимости от характеристики пород и пластовых флюидов.
Время пребывания кислотных растворов в пласте не должно превышать времени нейтрализации кислоты. КР нейтрализуется еще во время движения в порах терригенного пласта, а также в порах и трещинах карбонатного пласта. Это означает, что в поровых терригенных коллекторах выдержка КР в пласте не нужна, а в карбонатных — нежелательна. Если после вхождения кислоты в пласт немедленно удалить продукты ее реакции с призабойной зоны, то закупорки поровых каналов практически не происходит и эффективность КО возрастает.
Удаление продуктов реакции из призабойной зоны осуществляют путем возбуждения притока флюидов из пласта в скважину во время открытого переливания, если пластовое давление больше гидростатического, или путем дренирования с применением газоподобных агентов (азота, воздуха) или пенных систем, если пластовое давление меньше гидростатического. В случае если применить указанные способы невозможно, полезно вытеснить продукты реакции из призабойной зоны в глубину пласта путем закачивания 20 — 30 м3 водного раствора ПАВ, нефти, конденсата и т.п. Осаждение продуктов реакции в глубине пласта несущественно ухудшает результаты КО по сравнению со случаем, когда осаждение происходит в призабойной зоне. Однако КО с вытеснением продуктов реакции нежелательно многократно повторять в той же скважине.
Технология КО глубинно-насосных скважин часто предусматривает удаление продуктов реакции насосом, которым проводится эксплуатация скважины.
Обработка углеводородно-кислотными (УКЭ) и нефтекислотными эмульсиями (НКЭ) предназначена для углубления кислотного воздействия на карбонатный пласт и используется как средство антикоррозионной защиты труб при высоких пластовых температурах. Преимущественно УКЭ, НКЭ состоят из 15 % НС1, нефти или дизельного топлива и эмульгатора (первичных дистиллированных аминов фракции С17 — С20) в следующих соотношениях: 60; 39,5 и 0,5 Термохимическая КО — воздействие горячей кислотой на карбонатный пласт с пластовыми температурами до 40 °С. Нагревание КР производится во время экзотермической реакции кислоты с магнием в реакционном наконечнике на НКТ или в пласте с гранулами магния, размещенными в трещинах. Во время этого СКР теряет часть своей химической активности [6].
