Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций 2 -статически неопределимые системы .doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
5.82 Mб
Скачать

2.1.3 Канонические уравнения метода перемещений

Рассмотрим работу основной системы в методе перемещений и сравним с работой заданной системы (рисунок 2.8). В основной системе от действия внешней нагрузки в наложенных связях будут возникать реактивные усилия (реакции) R1P и R2P. Отметим, что суммарная реакция R1P (на рисунке не показана) равна R1P + R′′1P, поскольку в левом жестком узле расположен верхний конец левой стойки, момент в котором равен R1P и левый конец ригеля с моментом R′′1P .

В заданной системе этих реакций нет. Реактивные моменты и силы можно обратить в нуль, если повернуть заделку на угол, равный действительному углу поворота z1 и сместить узлы ригеля так, чтобы их смещение равнялось действительному смещению z2.

Отрицание реактивных усилий в веденных связях лежит в основе канонических уравнений метода перемещений. Коротко эти уравнения можно записать так: R1i = 0, R2i = 0, … Rni = 0 – сумма реакций в каждой наложенной связи равна нулю.

Рассмотрим подробно в развернутом виде для нашего примера первое уравнение

R1i = R1Р + R11 + R12 = 0, (а)

где: R1Р – реакции в первой введенной связи от внешней нагрузки, R11 – реакции в первой введенной связи от первого перемещения z1, R12 – реакции в первой введенной связи от от второго перемещения z2 .

Реакции от перемещений можно представить в таком виде:

R11 = Z1r11, R12 = Z2r12.

где: Z1, Z2 – искомые перемещения узлов, r11, r12 – реакции в наложенных связях от единичных смещений этих связей (рисунок 2.9).

Тогда уравнение (а) примет вид

Z1r11 + Z2r12 + R1Р = 0,

аналогично для второй связи

Z1r21 + Z2r22 + R2Р = 0.

В общем виде система канонических уравнений метода перемещений имеет вид:

(2.4)

где – r11, r22, ... riirnn - главные коэффициенты,

r12, r21, r13, r23 rij - побочные коэффициенты. В соответствии с теоремой о взаимности реакций выполняется условие: rij = rji,

R1Р, R2Р,… RnР – грузовые реакции (свободные члены системы алгебраических уравнений (2.4)).

Физический смысл канонических уравнений (2.4) заключается в следующем – сумма реакций в каждой наложенной связи от действия внешней нагрузки и от угловых и линейных смещений равна нулю.

2.1.4 Определение коэффициентов и свободных членов канонических уравнений

Для определения коэффициентов и свободных членов канонических уравнений необходимо в основной системе построить эпюры моментов от нагрузки и от единичных смещений наложенных связей. Построение эпюр изгибающих моментов производится при помощи таблиц (см. приложение В). В таблицах приводятся эпюры моментов для статически неопределимых балок, полученные методом сил.

Значения коэффициентов и свободных членов уравнений (2.4) получаем из рассмотрения равновесия узлов рамы в единичных и грузовом состояниях (по единичным и грузовой эпюрам). Порядок определения коэффициентов и свободных членов канонических уравнений покажем на примере.