- •Раздел 1 Введение в предмет. Основные понятия физиологии.
- •Физиологическая функция, ее параметры и норма. Взаимоотношение структуры и функции.
- •Единство организма и внешней среды. Понятие о внутренней среде организма и ее компонентах (кровь, лимфа, межклеточная жидкость).
- •Понятие о физиологических константах. Представления о мягких и жестких константах. Понятия гомеостаза, гомеокинеза.
- •Раздел 2 Физиология возбудимых тканей.
- •Физиологические свойства возбудимых тканей.
- •2. Мембранные и ионные механизмы происхождения биопотенциалов в покое. Особенности местного и распространяющегося процессов возбуждения.
- •Законы раздражения одиночных и целостных возбудимых структур: «силы», «все или ничего», «силы-длительности». Понятие о реобазе, хронаксии, полезном времени.
- •Механизмы проведения возбуждения вдоль нервных волокон. Законы проведения возбуждения в нервах
- •Виды передачи сигнала между возбудимыми клетками. Понятие синапса. Классификация синапсов. Функциональные свойства электрических и химических синапсов.
- •Классификация синапсов
- •Свойства синапсов
- •Механизм передачи сигнала в химическом синапсе. Виды синаптических нейромедиаторов и нейромодуляторов. Особенности передачи сигнала в возбуждающих и тормозных синапсах.
- •Этапы и механизмы передачи возбуждения в возбуждающем химическом синапсе
- •Синтез медиатора
- •Особенности работы тормозного химического синапса
- •Медиаторы и модуляторы синаптической передачи
- •10.Физические и физиологические свойства скелетных мышц. Понятие двигательной единицы, физиологические особенности быстрых и медленных двигательных единиц.
- •Двигательные единицы
- •1. Медленные, неутомляемые двигательные единицы (тип I)
- •2. Быстрые, легко утомляемые де (тип II-в)
- •3. Быстрые, устойчивые к утомлению де (тип II-а)
- •Раздел 3 Физиология центральной нервной системы.
- •Понятие о цнс и ее функциях. Нервный центр, его физиологические свойства Понятие нейронных сетей, их типы.
- •Основные типы нервных сетей Иерархические сети
- •Локальные сети
- •Дивергентные сети с одним входом
- •Основные принципы распространения возбуждения в нервных центрах, в нейронных сетях (дивергенция, конвергенция, одностороннее проведение, реверберация).
- •5. Торможение в цнс и его виды. Интегративная деятельность нейрона
- •6.Роль различных отделов цнс в регуляции физиологических функций. Физиология спинного мозга. Клинически важные спинальные рефлексы
- •Рефлексы дуга которых переключается в спинном мозге, называются спинальными Рефлексы спинного мозга
- •8. Физиология мозжечка, его роль в регуляции соматических и вегетативных функций
- •11.Гипоталамус как высший центр вегетативной регуляции. Его роль в формировании мотивационно-потребностной сферы.
- •12.Базальные ганглии, их структурно-функциональная характеристика и роль в формировании мышечного тонуса и двигательных программ
- •13.Афферентные, эфферентные и ассоциативные области коры головного мозга. Колонковая организация коры. Корково-подкорковые и корково-висцеральные взаимоотношения (к.М. Быков).
- •14.Автономная (вегетативная) нервная система. Ее функции. Физиологические особенности симпатического, парасимпатического и метасимпатического отделов автономной нервной системы.
- •15.Роль различных отделов цнс (спинальных, бульбарных, мезенцефалических центров, гипоталамуса, мозжечка, ретикулярной формации, коры большого мозга) в регуляции функций автономной нервной системы.
- •16.Понятие функциональной асимметрии головного мозга и межполушарном взаимодействии. Классификация асимметрий. Структурно-функциональная специализация полушарий головного мозга
- •Раздел 4 Физиология эндокринной системы.
- •3.Физиология гипоталамо-гипофизарной системы. Нейросекреты гипоталамуса. Функциональные связи гипоталамуса с гипофизом. Гормоны адено- и нейрогипофиза. Их функциональная роль.
- •Физиология щитовидной железы. Тиреоидные гормоны и их роль в регуляции обмена веществ и энергии, росте и развитии организма.
- •Эндокринная функция поджелудочной железы. Роль гормонов в регуляции углеводного, белкового и липидного обмена.
- •Физиология надпочечников. Гормоны коркового и мозгового вещества, их роль в регуляции функций организма.
- •Физиология половых желез. Мужские и женские половые гомоны, их роль в регуляции обмена веществ и функций организма. Регуляция эндокринной функции половых желез
- •Раздел 5 Физиология кровообращения
- •2.Изменения возбудимости при возбуждении типичных кардиомиоцитов. Электромеханическое сопряжение. Экстрасистола. Компенсаторная пауза. Систолический и минутный объем крови
- •Сердечный цикл, его фазовая структура. Изменения тонуса мышечных стенок полостей сердца, изменения их объемов, давления крови и состояния клапанного аппарата в различные фазы кардиоцикла.
- •7.Функциональная классификация кровеносных сосудов (упругорастяжимые (амортизирующие), резистивные, обменные, емкостные, шунтирующие). Факторы, обеспечивающие движение крови по сосудам.
- •8.Параметры периферического кровообращения (давление крови, линейная и объемная скорости кровотока, время кругооборота крови). Изменение скорости кровотока в различных участках сосудистого русла.
- •10. Понятия систолического, диастолического, пульсового и среднего артериального давления. Факторы, определяющие величину ад.
- •Варианты положения электрической оси сердца у здоровых людей
- •12. Методы исследования звуковых проявлений деятельности сердца (аускультация, фонокардиография). Происхождение сердечных тонов, их виды и места наилучшего выслушивания.
- •Раздел 6 Физиология дыхания
- •Значение дыхания для организма. Основные этапы процесса. Внешнее дыхание. Биомеханика вдоха и выдоха.
- •3.Транспорт газов кровью. График диссоциации оксигемоглобина. Факторы, влияющие на процесс образования и диссоциации оксигемоглобина. Понятие кислородной емкости крови.
- •Понятие дыхательного центра. Представление о локализации и организации строения дыхательного центра. Типы дыхательных нейронов продолговатого мозга, их автоматия.
- •Гуморальная регуляция дыхания. Роль углекислоты и рН крови в гуморальном механизме регуляции дыхания.
- •Раздел 7 Физиология пищеварения
- •Пищеварение, его значение. Типы пищеварения, их характеристика.
- •2. Нейро-гуморальные механизмы голода и насыщения.
- •3.Закономерности организации деятельности желудочно-кишечного тракта по принципу пищеварительного конвейера. Общие принципы нейро-гуморальной регуляции функций пищеварительного тракта.
- •5.Глотание, его фазы и механизмы.
- •6. Функции желудка. Количество, состав и свойства желудочного сока. Значение соляной кислоты и других компонентов желудочного сока. Фазы желудочной секреции, их нервно-гуморальные механизмы.
- •7. Моторная деятельность желудка. Нервные и гуморальные факторы, влияющие на моторную и эвакуаторную функции желудка.
- •8.Значение и роль пищеварения в двенадцатиперстной кишке. Функции поджелудочной железы. Количество, состав и свойства поджелудочного сока. Механизмы регуляции поджелудочной секреции.
- •9.Функции печени. Желчь, ее количество, состав, значение для пищеварения. Механизмы желчеобразования, депонирования и желчевыделения, их регуляция.
- •10. Значение и роль пищеварения в тонкой кишке. Механизм образования кишечного сока. Количество, свойство, ферментативный состав кишечного сока. Регуляция отделения кишечного сока.
- •Полостное и мембранное пищеварение, их взаимосвязь и выраженность в различных отделах желудочно-кишечного тракта.
- •12. Моторная деятельность тонкой и толстой кишки, ее особенности, значение, механизмы регуляции.
- •Моторная функция толстого кишечника. Дефекация.
- •13. Пищеварение в толстом кишечнике, его особенности. Значение микрофлоры в этом процессе. Ферментный состав сока толстой кишки, регуляция.
- •Особенности пищеварения в толстом кишечнике.
- •14. Всасывание продуктов пищеварения в различных отделах пищеварительного тракта, его механизмы.
- •Раздел 8 Метаболические основы физиологических функций.
- •1.Обмен веществ – как основное условие обеспечения жизнедеятельности и сохранения гомеостаза. Пластическая и энергетическая роль питательных веществ. Процессы ассимиляции и диссимиляции веществ.
- •2.Значение воды для организма. Представление о регуляции водного и минерального обмена, саморегуляторном принципе этих процессов. Витамины, их значение.
- •3.Представление об энергетическом балансе организма. Калорическая ценность различных питательных веществ. Принципы организации рационального питания. Методы прямой и непрямой калориметрии.
- •Понятие калорической ценности, дыхательного коэффициента и калорического эквивалента кислорода, их величины для разных видов окисляемых питательных веществ.
- •Раздел 9 Физиология терморегуляции
- •Понятие терморегуляции. Теплопродукция. Теплоотдача
- •Постоянство температуры внутренней среды организма, как необходимое условие нормального протекания метаболических процессов.
- •Температурная схема тела, ее суточные колебания. Пойкилотермия, гомотермия, гибернация.
- •Индивидуальные особенности температурной схемы тела:
- •Температура тела человека
- •1) От процессов теплообразования и теплоотдачи;
- •2) От факторов внешней среды;
- •3)Поведенческой активности.
- •Классификация организмов по механизмам гомеостатирования
- •Раздел 10 Физиология выделения
- •Понятие выделения, его роль в поддержании гомеостаза. Почка – главный выделительный орган.
- •2. Механизм клубочковой фильтрации, его регуляция. Первичная моча, отличие еѐ состава от плазмы крови.
- •3.Реабсорбция. Обязательная (облигатная) и избирательная (факультативная) реабсорбция. Активные и пассивные процессы, лежащие в основе реабсорбции.
- •Раздел 11 Физиология крови
- •Понятие крови, системы крови. Количество циркулирующей крови, ее состав. Функции крови. Основные константы крови, их величина и функциональное значение.
- •Понятие об осмотическом давлении крови. Представление о саморегуляторном принципе механизма поддержания констант крови. Понятие о гемолизе, его видах и плазмолизе.
- •3. Форменные элементы крови (эритроциты, лейкоциты, тромбоциты), их физиологическое значение. Понятие об эритро-, лейко- и тромбоцитопоэзе, их нервной и гуморальной регуляции.
- •4.Гемоглобин, его виды и соединения, функциональное значение. Лимфа, ее состав и функции.
- •7.Представление о внешней (тканевой) и внутренней (кровяной) системах свертывания крови, фазах свертывания крови, процессах ретракции и фибринолиза.
- •8.Понятие о противосвертывающих системах крови. Представление о принципах их функционирования.
- •Раздел 12 Физиология сенсорных систем
- •1.Понятие сенсорной системы. Понятие анализатора с позиций учения и.П. Павлова. Соотношение понятий «сенсорная система» и «анализатор». Понятие органа чувств.
- •6.Механизмы рецепции и восприятия цвета. Теории восприятия цвета. Основные виды нарушения восприятия цвета.
- •9. Общая морфологическая и функциональная организация отделов вкусовой сенсорной системы. Механизм рецепции и восприятия вкуса.
- •10. Общая морфологическая и функциональная организация отделов обонятельной сенсорной системы. Механизм рецепции и восприятия запахов. Классификация запахов.
- •Раздел 13 Физиология боли
- •1.Понятие боли, ноцицепции. Классификация боли. Морфо-функциональная характеристика отделов болевой сенсорной системы.
- •3.Роль таламуса и коры больших полушарий головного мозга в интеграции и анализе болевого возбуждения. Сенсорно-дискриминативный и семантический анализ повреждающего воздействия.
- •4. Понятия антиноцицепции и антиноцицептивной системы (анцс). Компоненты и функции анцс. Уровни анцс. Нейрохимические и нейрофизиологические механизмы
- •Обезболивающая (антиноцицептивная) система
- •5.Физиологические основы обезболивания.
- •Раздел 14 Физиология высшей нервной деятельности
- •Понятие внд. Представление о проявлениях внд (врожденных и приобретенных формах поведения).
- •Торможение в внд, его виды: безусловное (запредельное и внешнее), условное (угасательное, дифференцированное, условный тормоз, запаздывающее), условия их возникновения.
- •Различают торможение безусловное, или пассивное, и условное, или активное.
- •Замечено, что под действием посторонних раздражителей легче всего затормаживаются молодые, слабо упроченные условные рефлексы.
- •Наиболее простым видом условного торможения является угасание условных рефлексов.
- •Угасание условных рефлексов лежит в основе забывания, вызванного отсутствием повторений.
- •Дифференцировочное торможение
- •При экспериментальном образовании условного рефлекса
- •Торможение запаздывания вырабатывается с большим трудом у возбудимых индивидуумов.
- •Условным тормозом к сигнальным раздражителям может стать любой внешний агент.
- •Любой вид внутреннего торможения является активным процессом задержки, подавления условных рефлексов.
- •5.Понятие психики и высших психических функций. Понятие ощущения и восприятия. Представление о природе ощущений и восприятий (лечебный, мед.Биохимия, мед-проф. Фак-ты).
- •Признаки впф и факторы, влияющие на их развитие
- •8. Понятие памяти. Виды памяти. Представление о механизмах кратковременной и долговременной памяти.
- •Сон, его виды и фазы. Нейрофизиологические механизмы сна. Теории сна и сновидений (лечебный, педиатрический фак-ты).
- •Структурно-функциональная организация репродуктивной системы мужского организма (лечебный, педиатрический фак-ты).
- •Структурно-функциональная организация репродуктивной системы женского организма (лечебный, педиатрический фак-ты).
- •Раздел 15 Физиология функциональных состояний
- •Функциональное состояние. Способы оценки, индивидуальные различия и регуляция функциональных состояний.
- •Понятия здоровья. Критерии оценки. Факторы, влияющие на состояние здоровья. Особенности сохранения здоровья в современных условиях
- •Генетические факторы
- •Состояние окружающей среды
- •Медицинское обеспечение
- •Условия и образ жизни
- •3.Здоровье и труд. Понятие здорового образа жизни. Особенности образа жизни и труда студентов.
- •4.Работоспособность. Этапы работоспособности. Утомление, его механизмы. Переутомление, его характеристики. Восстановление, его виды. Понятие пассивного и активного отдыха.
3. Быстрые, устойчивые к утомлению де (тип II-а)
По своим морфофункциональным свойствам этот тип мышечных волокон занимает промежуточные положения между ДЕ I и II- В типов. Это сильные, быстро сокращающиеся волокна, обладающие большой аэробной выносливостью благодаря присущей им возможности использовать для получения энергии как аэробные, так и анаэробные процессы.
У разных людей соотношение числа медленных и быстрых ДЕ в одной и той же мышце определено генетически и может отличаться весьма значительно. Так, например, в четырехглавой мышце бедра человека процент медленных волокон может варьировать от 40 до 98%. Чем больше в мышце процент медленных волокон, тем более она приспособлена к работе на выносливость. И наоборот, лица с высоким процентом быстрых сильных волокон в большей мере способны к работе, требующей большой силы и скорости сокращения мышц.
11.Характеристика видов и режимов мышечного сокращения. Механизм тетанического сокращения. Условия возникновения оптимума и пессимума.
Фазы мышечного сокращения
При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):
• латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;
• фаза укорочения (около 50 мс);
• фаза расслабления (около 50 мс).
|
Рис. 4. Характеристика одиночного мышечного сокращения. Происхождение зубчатого и гладкого тетануса. Б – фазы и периоды мышечного сокращения, Б – режимы мышечного сокращения, возникающие при разной частоте стимуляции мышцы. Изменение длины мышцы показано синим цветом, потенциал действия в мышце - красным, возбудиумость мышцы - фиолетовым. |
Режимы мышечного сокращения
В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).
• Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.
• Тетаническое сокращение – это длительное сокращение скелетных мышц, возникающее в ответ на ритмическое раздражение (т.е. на ряд последующих друг за другом стимулов) В его основе лежит явление мышечных сокращений.
• При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.
• При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.
Оптимум и пессимум частоты
Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.
12.Механизм мышечного сокращения. Электромеханическое сопряжение. Зависимость силы сокращения мышцы от ее исходной длины. Энергетика мышечного сокращения.
Скелетная мышца представляет собой сложную систему, преобразующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.
Механизм мышечного сокращения. В процессе сокращения мышечного волокна в нем происходят следующие преобразования:
А. Электрохимическое преобразование:
1. Генерация ПД.
2. Распространение ПД по Т-системе.
3. Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+.
Б. Хемомеханическое преобразование:
4. Взаимодействие ионов Са2+ с тропонином, освобождение активных центров на актиновых филаментах.
5. Взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги.
6. Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.
Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3—5 м/с при температуре 36 oС. Таким образом, генерация ПД является первым этапом мышечного сокращения.
Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+ из цистерн и повышению внутриклеточной концентрации Са2+ с 107до 105 M. Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са2+ составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са2+, т. е. электрохимическое преобразование.
При повышении внутриклеточной концентрации ионов Са2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са2+ . Следовательно, участие ионов Са2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.
Существенная роль кальция в механизме мышечного сокращения была доказана в опытах с применением белка экворина, который при взаимодействии с кальцием излучает свет. После инъекции экворина мышечное волокно подвергали электрической стимуляции и одновременно измеряли мышечное напряжение в изометрическом режиме и люминесценцию экворина. Обе кривые полностью коррелировали друг с другом (рис. 2.21). Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином.
Следующим, пятым, этапом электромеханического сопряжения является присоединение головки поперечного мостика к актиновому филаменту к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.
Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей
Первоначально полагали, что ионы Са2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровергли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.
Гидролиз АТФ в АТФазном центре головки миозина сопровождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоростью расщепления АТФ. Очевидно, что быстрые фазические волокна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъединение головки миозина и актинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 106М.
Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са2+. Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов. Затем концентрация АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.
Электромеханическое сопряжение - это последовательность процессов, в рез-те которых потенциал д-вия плазм.мембраны мышечного волокна приводит к запуску цикла поперечных мостиков. Важнейшую роль в запуске сокращения кардиомиоцитов играет саркоплазматический ретикулум - сложная система канальцев и цистерн, оплетающих миофибриллы . В миокарде он выражен слабее, чем в скелетных мышцах . С внеклеточным пространством саркоплазматический ретикулум не сообщается, однако к нему тесно примыкают Т-трубочки (поперечные трубочки) - инвагинации сарколеммы , идущие вдоль линий Z. Потенциал покоя рабочих кардиомиоцитов составляет от -80 до-100 мВ. Он обусловлен двумя причинами:
- сарколемма в покое почти непроницаема для Na+ , но хорошо пропускает К+ ;
- за счет работы Na+,К+-АТФазы образуется значительный концентрационный градиент для К+ , направленный наружу (внутриклеточная концентрация К+ значительно выше внеклеточной). В результате К+ выходит из клетки, создавая трансмембранную разность потенциалов. Напротив, внутриклеточные концентрации Na+ и Са2+ существенно ниже внеклеточных.
