Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задачи все типы ЕГЭ1.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
29.32 Кб
Скачать

Задачи на сложные проценты

  1. 107713 Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 56%. Если бы стипендия дочери уменьшилась вдвое, общий доход семьи сократился бы на 2%. Сколько процентов от общего дохода семьи составляет зарплата жены?

  1. 99570 Митя, Антон, Гоша и Борис учредили компанию с уставным капиталом 200000 рублей. Митя внес 14% уставного капитала, Антон – 42000 рублей, Гоша – 12% уставного капитала, а оставшуюся часть капитала внес Борис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1 000 000 рублей причитается Борису? Ответ дайте в рублях.

  1. EC797C В период распродажи магазин снижал цены дважды: в первый раз на 45%, во второй – на 20%. Сколько рублей стал стоить чайник после второго снижения цен, если до начала распродажи он стоил 700 р.?

  1. 24F217 В период распродажи магазин снижал цены дважды: в первый раз на 10%, во второй – на 20%. Сколько рублей стал стоить чайник после второго снижения цен, если до начала распродажи он стоил 600 р.?

  1. 5A6594 Свежие фрукты содержат 80% воды, а высушенные — 28%. Сколько сухих фруктов получится из 288 кг свежих фруктов?

  1. 41EA77 Свежие фрукты содержат 75% воды, а высушенные — 25%. Сколько требуется свежих фруктов для приготовления 45 кг высушенных фруктов?

Задачи на растворы, смеси и сплавы

  1. 108853 Смешали 4 литра 25% водного раствора некоторого вещества с 11 литрами 40% водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

  1. 314943 Смешали 30%-ный раствор соляной кислоты с 10%-ным и получили 600 г 15%-го раствора. Сколько граммов 10%-го раствора было взято?

  1. 5E49A0 Смешали некоторое количество 10-процентного раствора некоторого вещества с таким же количеством 12-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

  1. 338772 Какое количество воды надо добавить в 1 литр 10%-ного раствора уксуса, чтобы получить 4%-ный раствор?

  2. 350236 Имеются два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 83% кислоты. Сколько килограммов кислоты содержится во втором растворе?

  1. 99576 Первый сплав содержит 10% меди, второй – 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

  1. 314403 Имеется два сплава с разным содержанием золота. В первом сплаве содержится 35% золота, а во втором – 60%. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 40% золота?

  1. 9 Сплав золота с серебром, содержащий 80 г золота, сплавили со 100 г чистого золота. В результате содержание золота в сплаве повысилось по сравнению с первоначальным на 20%. Сколько серебра в сплаве?

  1. 99577 Сме­шав 30-про­цент­ный и 60-про­цент­ный рас­тво­ры кис­ло­ты и до­ба­вив 10 кг чи­стой воды, по­лу­чи­ли 36-про­цент­ный рас­твор кис­ло­ты. Если бы вме­сто 10 кг воды до­ба­ви­ли 10 кг 50-про­цент­но­го рас­тво­ра той же кис­ло­ты, то по­лу­чи­ли бы 41-про­цент­ный рас­твор кис­ло­ты. Сколь­ко ки­ло­грам­мов 30-про­цент­но­го рас­тво­ра ис­поль­зо­ва­ли для по­лу­че­ния смеси?

  1. 501042 Име­ет­ся два со­су­да. Пер­вый со­дер­жит 100 кг, а вто­рой — 20 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если эти рас­тво­ры сме­шать, то по­лу­чит­ся рас­твор, со­дер­жа­щий 72% кис­ло­ты. Если же сме­шать рав­ные массы этих рас­тво­ров, то по­лу­чит­ся рас­твор, со­дер­жа­щий 78% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся в пер­вом со­су­де?