- •1.Мейоз. Генетический смысл мейоза.
- •2. Митоз. Генетический смысл митоза.
- •3.Особенности генетического метода Менделя. Условия действия закономерностей Менделя.
- •4. Закон свободного комбинирования неаллельных генов, его цитологическое обоснование.
- •5.Доминирование, кодоминирование, множественный аллелизм.
- •6.Экспрессивность и пенетрантность. Гены – модификаторы.
- •7.Взаимодействие неаллельных генов. Типы взаимодействий.
- •8.Причины различий в расщеплении при комплементарном взаимодействии генов.
- •9.Типы определения пола в природе (эпигамное, прогамное, сингамное).
- •10. Половые хромосомы и аутосомы. Хромосомное определение пола. Наследование признаков, сцепленных с полом, у дрозофилы и человека.
- •11.Балансовая теория определения пола.
- •12. Численные соотношения полов и их регуляция. Признаки, ограниченные полом.
- •14.Нерасхождение половых хромосом у человека. Наследование признаков при нерасхождении половых хромосом. Примеры.
- •15.Сцепленное наследование признаков и группы сцепления. Работы Моргана по изучению наследования сцепленных признаков (окраски тела и формы крыльев) у дрозофилы.
- •18. Величина перекреста, линейное расположение генов в хромосоме. Генетические карты хромосом у высших организмов. Примеры.
- •19.Генетическое и эволюционное значение кроссинговера. Доказательства кроссинговера. Митотический и мейотический кроссинговер.
- •20. Интерференция при кроссинговере. Коэффициент совпадения (коинциденции).
- •21. Прямые и косвенные доказательства роли нуклеиновых кислот в хранении и передаче наследственной информации.
- •22. Структура молекулы днк. Типы днк.
- •23. Репликация днк. Ключевые ферменты, участвующие в синтезе днк.
- •24. Репликативная вилка прокариот. Типы репликации.
- •25. Доказательства полуконсервативной схемы репликации днк.
- •26. Полимеразная цепная реакция. Схема. Возможности применения.
- •27. Репарация днк. Основные типы репарации. Ферменты, обеспечивающие репарационные события.
- •28. Транскрипция. Схема транскрипции.
- •29. Общее и различия в строении генов эукариот и прокариот.
- •37. Методы получения и идентификации автополиплоидов.
- •42. Механизмы редукции числа цитоплазматических органов.
- •43. Особенности митохондриальной и пластидной наследственности.
- •44. Ядерная и цитоплазматическая мужская стерильность. Формы цмс.
- •45. Гетерозис. Определение, открытие и основные его закономерности. Типы гетерозиса по Густафсону.
- •46. Гипотеза сверхдоминирования, объясняющая явление гетерозиса.(или моногибридный гетерозис)
- •47. Гипотеза доминирования, объясняющая явление гетерозиса. Пути закрепления гетерозиса.
- •48. Аутбридинг и инбридинг. Генетическая сущность инбридинга.
- •49. Характеристика инцухт-линий, их практическое значение. Инбредная депрессия и инбредный минимум.
- •50. Схема получения двойных межлинейных гибридов кукурузы на основе цмс.
- •51. Понятие и формы изменчивости.
- •53. Основные положения мутационной теории г. Де Фриза.
- •54. Классификации мутаций.
- •55. Индуцированный мутагенез. Виды мутагенов. Спонтанная мутация.
- •56. Закон гомологических рядов наследственной изменчивости н.И. Вавилова.
- •57. Самонесовместимость и ее формы.
- •58. Отдаленная гибридизация. Наследования признаков при отдаленной гибридизации. Использование отдаленной гибридизации в селекции.
- •59. Особенности генетики индивидуального развития. Характеристика групп генов, обеспечивающих развитие организма. Генетика развития отдельных органов растения.
- •60. Генетическая и генотипическая структура популяции. Закон Харди-Вайнберга. Условия его действия
18. Величина перекреста, линейное расположение генов в хромосоме. Генетические карты хромосом у высших организмов. Примеры.
Величина кроссинговера измеряется отношением числа кроссоверных особей к общему числу особей в потомстве анализируемого скрещивания и выражается в процентах.
Величина перекреста хромосом отражает силу сцепления генов в хромосоме: чем больше величина перекреста, тем меньше сила сцепления. Т. Морган предположил, что частота кроссинговера показывает относительное расстояние между генами: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме, чем реже кроссинговер, тем они ближе друг к другу. Когда мы указываем, что рекомбинация генов черного цвета тела и коротких крыльев у дрозофилы происходит с частотой 17%, то эта величина определенным образом характеризует расстояние между данными генами в хромосоме.
На основе многочисленных генетических исследований Морган выдвинул гипотезу линейного расположения генов в хромосоме. Только при этом допущении процент рекомбинантов может отражать относительное расстояние между генами в хромосоме. Одним из классических генетических опытов Моргана, доказывающих линейное расположение генов, был следующий опыт с дрозофилой. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтый цвет тела у (yellow), белый цвет глаз w (white) и вильчатые крылья bi (bifid), были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1160 мух некроссоверных (нормальных и одновременно несущих все три рецессивных признака), 15 мух кроссоверных, возникающих от перекреста между генами у и w, и 43 особи от кроссинговера между генами w и bi. Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами и их последовательного, т. е. линейного, расположения в хромосоме. Расстояние между генами у и bi равно сумме двух одинарных перекрестов между у и w, w и bi. Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов вдоль по длине хромосомы строго фиксировано, т. е. каждый ген занимает в хромосоме свое определенное место — локус.
Генетическая карта – это схематическое изображение относительного расположения генов одной группы сцепления. Принципы построения ген карт:
Число групп сцепления должно соответствовать гаплоидному числу хромосом;
Гены должны располагаться по хромосоме упорядоченно в линейном порядке, что не должно противоречить хромосомной теории наследования.
Локализация генов на карте осуществляется последовательным учетом частот кроссинговера между близко расположенными генами. Это дает возможность определить последовательность расположения генов. Цифры (сМ) на карте выражают расстояние каждого из них от гена, являющегося первым в линейном ряду. Их вычисляют простым суммированием промежуточных расстояний.
19.Генетическое и эволюционное значение кроссинговера. Доказательства кроссинговера. Митотический и мейотический кроссинговер.
Эволюционное значение кроссинговера
В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые гаплотипы, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.
Генетическое значение кроссинговера
Является важнейшим механизмом, обеспечивающим комбинативную изменчивость в популяциях и тем самым дающий материал для естественного отбора.
Доказательства перекреста хромосом.
Г. Крейтона и Б.Мак-Клинток (1931) впервые показали, что при перекресте происходит физический обмен частями гомологичных хромосом. Они экспериментировали с формой кукурузы (Р), у которой 9-ая пара хромосом была гетероморфной: одна хромосома нормальная, вторая имела на одном плече узелки, а второе плечо было длиннее нормы. При этом нормальная хромосома несла доминантный ген – wx+ (крахмалистый эндосперм) и рецессивный - с (неокрашенный эндосперм), а изменения – ген wx (восковидный эндосперм) и доминантный ген – с+ (окрашенный эндосперм). Скрещивание этой формы с кукурузой, имеющей нормальную 9-ую хромосому и гомозиготной по рецессивным генам wx и с, позволило получить FBC (беккроссное потомство (поколение)), в котором фенотипически хорошо выявлялись некроссоверы и кроссоверы. Анализ хромосом у этих форм, в свою очередь, подтвердил факт получения кроссоверов в результате кроссинговера.
Аналогичные опыты были проведены К.Штернером (1931) на дрозофиле.
Митотический кроссинговер - тип генетической рекомбинации, который может проходить в соматических клетках при митотических делениях как у организмов, обладающих полом, так и бесполых организмов (например, некоторых одноклеточных грибов, у которых не известен половой процесс). В случае бесполых организмов митотическая рекомбинация является единственным ключом к пониманию сцепления генов, так как у таких организмов это единственный способ генетической рекомбинаци. Кроме того, митотическая рекомбинация может привести к мозаичной экспрессии рецессивных признаков у гетерозиготной особи. Такая экспрессия имеет важное значение в онтогенезе, она также позволяет изучать летальные рецессивные мутации.
Мейотический кроссинговер осуществляется после того, как гомологичные хромосомы в зиготенной стадии профазы I соединяются в пары, образуя биваленты. В профазе I каждая хромосома представлена двумя сестринскими хроматидами, и перекрест происходит между хроматидами.
