- •1. Изоляция электрооборудования. Классификация изоляции.
- •2. Требования, предъявляемые к изоляции электрооборудования.
- •3. Основные факторы, воздействующие на изоляцию в процессе эксплуатации.
- •4. Газ как изолирующая среда
- •5. Виды электрических разрядов в газах
- •6. Физические процессы в ионизированных газах. Виды ионизации.
- •7. Лавина электронов.
- •8. Условие самостоятельного разряда.
- •9. Развитие заряда в однородном поле. Закон Пашена.
- •11. Разряды в неоднородном поле. Закон подобия разрядов.
- •12. Разряды в несимметричных полях. Эффект полярности
- •13. Понятие лидера и главного разряда.
- •14. Дуговой разряд.
- •15. Коронный разряд на проводах лэп.
- •16. Разряды в воздушном промежутке при импульсном напряжении.
- •17. Статическое распределение разрядных напряжений.
- •18. Разряды в воздухе вдоль поверхности твердой изоляции.
- •19. Изоляторы высокого напряжения. Назначение, типы и характеристики изоляторов.
- •20. Изоляторы для закрытых электроустановках.
- •21. Изоляторы для открытых электроустановках.
- •22. Гирлянды изоляторов. Распределение напряжения по элементам гирлянды.
- •23. Выбор изоляторов.
- •24. Выбор основных изоляционных промежутков лэп и ру.
- •25. Общая характеристика внутренней изоляции.
- •26. Внутренняя газовая изоляция.
- •27. Вакуумная изоляция.
- •28. Жидкая изоляция.
- •29. Кратковременная и длительная электрическая прочность внутренней изоляции
- •30. Маслобарьерная изоляция (мби).
- •31. Бумажно-масляная изоляция.
- •32. Изоляция кабелей.
- •33. Изоляция силовых трансформаторов.
- •34. Изоляция электрических машин высокого напряжения.
- •35. Изоляция силовых конденсаторов.
- •36. Изоляция герметичных распределительных устройств (круэ).
- •37. Общая характеристика испытаний изоляции.
- •38. Испытательные установки переменного тока
- •39. Испытательные установки постонного тока.
- •40. Генераторы импульсных напряжений.
- •47. Грозовые перенапряжения.
- •48. Защита от прямых ударов молнии.
- •49.Заземление в установках высокого напряжения.
- •50.Сопротивление заземлителей.
- •51. Защитные разрядники и опн.
- •52. Молниезащита лэп. Общая характеристика.
- •55. Рекомендуемые способы грозозащиты лэп различных напряжений
- •56. Защита оборудования подстанций от прямых ударов молнии
- •59. Внутренние перенапряжения. Общая характеристика.
- •60. Координация изоляции электроэнергетических систем.
4. Газ как изолирующая среда
Газы,
как изолирующая среда, широко применяются
на воздушных линиях, в РУ и другой
электрической аппаратуре. В качестве
изолирующих газов используется воздух,
элегаз (
),
азот, смесь элегаза с азотом и др.
Достоинства газовой изоляции – это относительно низкая стоимость, относительно высокая электрическая прочность, свойство «самовосстановления», хорошая теплопроводность.
Воздух.
При нормальных атмосферных условиях
(давление
= 100 кПа,
температура
= 293 К,
плотность
)
и в однородном электрическом поле
электрическая прочность воздуха
составляет
.
Такое значение характерно для расстояния
между электродами менее 1 м. При
расстояниях
прочность составляет около
,
а при расстоянии 10 м и выше –
.
Снижение электрической прочности
воздуха при больших расстояниях
объясняется стримерной теорией развития
разряда (см. п. 1.6). На величину
электрической прочности воздуха
оказывают влияние температура, давление
(плотность) и влажность.
Электрическое
оборудование обычно проектируется для
работы на высоте до 1000 м над уровнем
моря при темепературе
и
.
При увеличении высоты на 100 м и
увеличении температуры на
прочность воздуха снижается на 1 %.
Увеличение абсолютной влажности в два
раза снижает прочность на 6–8 %. Эти
данные характерны для расстояния между
токоведущими частями до 1 м. При
увеличении расстояния влияние атмосферных
условий снижается.
Главным недостатком воздуха является то, что под воздействием на него короны образуется озон и окись азота, что в свою очередь приводит к старению твердой изоляции и коррозии.
В настоящее время для изготовления газовой изоляции используются следующие газы: элегаз, азот, смесь элегаза с азотом и некоторые фторуглероды. Многие из этих газов имеют электрическую прочность выше, чем у воздуха. Недостатком многих изоляционных газов является токсичность, высокая температура сжижения, способность выделять углерод, который, оседая на поверхности твердой изоляции, увеличивает ее проводимость.
Элегаз. В новых высоковольтных коммутационных аппаратах элегаз применяется в качестве изолирующей и дугогасящей среды. Коммутационная способность и диэлектрические свойства коммутационной аппаратов зависят от плотности элегаза, которая постоянно должна контролироваться. Утечки через уплотнения или корпус должны автоматически определяться приборами. Нормальное рабочее давление (давление заполнения при 20°С) для этих коммутационных аппаратов от 0,45 до 0,7 МПа в минимальном температурном диапазоне от –40°С до –25°С. Элегаз не токсичен, не подвержен загрязнению или увлажнению, не огнеопасен и не имеет озоноразрушающего эффекта. Однако, он сохраняется в атмосфере более 3200 лет и имеет парниковый потенциал в 22000 раз больше, чем потенциал углекислого газа. Несмотря на то, что доля элегаза в образовании парникового эффекта сравнительно мала (около 0,2 %), он включен в список парниковых газов из-за широкого использования в электроэнергетике.
