- •1. Basic properties and functions of biological membranes.
- •2. Transport of substance through membrane.
- •3. Methods of research of structure and functions of biological membranes: optical microscopy, electronic microscopy
- •4. Methods of research of structure and functions of biological membranes: method of diffraction of X-rays radiation, luminescent methods, nuclear magnetic resonance research
- •5. Potential of rest:
- •6. Potential of action.
- •7. Properties of liquids.
- •8. Superficial tension. Method of falling drops.
- •9. The general scheme of transfer and registration of the information. Electrodes.
- •10. Sensors. Kinds of sensors.
- •11. Application of sensors.
- •14. Kinds of X-rays.
- •16. Law of weakening of X-rays.
- •17. Methods of using of X-rays in medicine.
- •18. Structure of a nucleus, nuclear forces. Energy of connection of nucleons.
- •19. Radioactivity. Kinds of radioactive disintegrations.
- •20. The basic law of radioactive disintegration. A half-life period.
- •21. Ionizing radioactive radiation and its biological action.
- •22. The absorbed and exposition doze. Power of a doze.Relative biological efficiency.
- •23. Heart. Biophysical property of heart.
- •24. Rhythm of heart. Parameters of cardiac activity.Heart tones.
- •25. Electric activity of cells of a myocardium.
- •26. The electrocardiogram. Main assignments of ecg.
- •27. Basic peaks of ecg.
- •28. Imposing of electrodes at ecg. Main assignments.
- •30. Basic rhythms of eeg.
- •31. Technique of record of electroencephalogram.
- •32. Methods of research of electroencephalograms. Magnetoencephalography.
- •33. Luminescence and its kinds.
- •34. Stimulated radiation. Laser.
- •35. Mechanisms of action of laser radiation on biological tissues.
- •36. Aplication of laser radiation in medicine. (lilr, hilr)
- •38. Dispersion of light.
- •40. Law of Buger-Lambert-Ber. Optical density and transparency of substance.
- •41. Method of determination of substance concentration. Method of the caliber graph, method of comparison.
- •42. Polarization of light by bio-systems. Light natural and polarized.
- •43. Phenomenon of double refraction. Dichroism.
- •44. Research of microstructures in polarizing light.
- •45. Rotation of a plane of fluctuations of polarized light.
- •46) Special methods of light microscopy. Method of a dark field.Method of a light field.
- •47) Method of phase contrast. Polarizing microscopy.
- •48) The method interference contrast. Method of research in a view of a luminescence.
- •49) Device of a microscope. Characteristics of microscope.
- •50) Kinds of muscles and its properties.
- •51) Contractive apparatus of the muscles.
- •52) Basic provisions of model of sliding strings.
- •53) Biomechanics of a muscle.
- •54) Electromechanical interface in muscles.
- •55) Stages of a breath. Gas exchange in lungs.
- •56) Surfactant, its importance.
- •57) Biomechanics of external breath.
- •58) Ventilation of lungs. Act of inhalation, act of exhalation.
- •59) Elastic draft of lungs.
- •60) Pulmonary resistance. Extensibility.Minute volume of breath.
- •61) Bernoulli’s equation. Static and dynamics pressure.
- •62) Viscosity of liquid. Laminar and turbulent fluid flow.
- •63) Current of a liquid on a horizontal pipe. Puazal’s law.
- •64) Definition of speed of blood-groove.
- •65) Physical bases of rheography.
- •66) Hemodynamics. Linear and volumetric speed of blood-groove.
- •67) Physical model of vascular system.
- •68) Measurement of pressure of blood.
- •69) Systolic, diastolic, pulse pressures. Pulse wave.
- •70) Work of heart.
- •71) Systolic and minute volume of a blood-groove.
- •72) Biophysical features of an aorta. Arterial and venous pulse.
- •73) Introscopy, its kinds.
- •74) Computer tomograph.
- •75) Magnetic-resonant tomography.
- •76) Ultrasonic (Ultrasonic diagnostics).
- •77) Influence of electromagnetic fields. Diathermy, darsonvalism, inductothermy, uhf-therapy.
- •78) Physiotherapy. Ultrasonic therapy, microwave therapy.
- •79) Amplipulse therapy, microcurrent therapy, magnetotherapy.
- •80) Mobility of ions. Electrophoresis its kinds.
- •81) Medicinal electrophoresis.
- •82) Galvanizing.
- •83) Electrosecurity.
- •84) Primary stages of photobiological processes.
- •85) Photochemical reactions.
- •86) Chemiluminescence and its diagnostic importance.
- •87) Migration of energy.
- •88) Action of ultra-violet radiation on proteins and nucleonic acids.
- •89) Modelling. The basic stages of modeling.
- •90) Modelling. Classification of models.
31. Technique of record of electroencephalogram.
For reception of a high-grade picture of bioelectric activity of a brain careful installation of skin or needle electrodes is need. Thus observance of strict symmetry relatively of anterior a line is necessary.Thus for convenience of registration all skull is broken into the areas designated by letters: F-frontal, About-occipital area, Р-parietal, Т-temporal, С-area central line. Registration of EEG is made by special electrodes. Each electrode is connected to the amplifier. Record of potentials from each electrode is carried out concerning zero potential of the reviewer to which is accepted lobe of the ear, or a tip of a nose. Computer electroencephalograph «Компакт-нейро» channel device.
For reception of qualitative EEG it is desirable to place the patient in an armchair, in the weakened pose, blindly. At first recording of EEG is made, then various tests are made: in the form of sound and light irritations, test with opening and closing of eyes with supervision over dynamics of the basic rhythms.
32. Methods of research of electroencephalograms. Magnetoencephalography.
There are clinical (visual) and statistical methods of studying of EEG. The clinical (visual) analysis is strictly individual, has qualitative character, can show a degree of conformity or deviation EEG of the patient from the standard norms. In clinic there are special receptions of the description and clinical interpretation EEG.Statistical methods of studying of EEG use mathematical transformations. Example: at a cartographical method of electroencephalography.
A widely used method for studying brain functions is fMRI (functional Magnetic Resonance Imaging). fMRI measures changes in brain blood flow during specific tasks or stimulations. When comparing EEG to fMRI there are several advantages of EEG over fMRI:
EEG hardware costs significantly less than fMRI hardware
EEG is more portable than large fMRI machine
EEG has higher resolution (12.5 microseconds in NeurOne EEG vs. seconds in fMRI)
EEG doesn’t expose patients to high-intensity magnetic fields
EEG is silent, which is important when studying responses to audio.
Magnetoencephalography (MEG) is a non-invasive technique for investigating human brain activity. It allows the measurement of ongoing brain activity on a millisecond-by-millisecond basis, and it shows where in the brain activity is produced.How does MEG work? At the cellular level, individual neurons in the brain have electrochemical properties that result in the flow of electrically charged ions through a cell. Electromagnetic fields are generated by the net effect of this slow ionic current flow. While the magnitude of fields associated with an individual neuron is negligible, the effect of multiple neurons (for example, 50,000 – 100,000) excited together in a specific area generates a measureable magnetic field outside the head. These neuromagnetic signals generated by the brain are extremely small—a billionth of the strength of the earth’s magnetic field. Therefore, MEG scanners require superconducting sensors (SQUID, superconducting quantum interference device). The SQUID sensors are bathed in a large liquid helium cooling unit at approximately -269 degrees C. Due to low impedance at this temperature, the SQUID device can detect and amplify magnetic fields generated by neurons a few centimeters away from the sensors.
