Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
tablitsa_1-10.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
189.52 Кб
Скачать

Билет 5

5.1 Типы химической связи

Основные типы химической связи - ионная, ковалентная и водородная .

Ионная (электровалентая) Она образуется при взаимодействии атомов, которые сильно отличаются по электроотрицательности. В этом случае происходит переход валентных электронов от атомов с меньшей электроотрицательностью к атомам, у которых она больше. В результате такого перехода возникают два противоположно заряженных иона - катион и анион, которые взаимно притягиваются друг к другу. Наиболее типичной ионной связью является связь между металлами и галогенами. Для органических соединений наиболее характерными являются ковалентная и водородная связи.

Ковалентная (неэлектровалентная) связь - основная химическая связь в органических соединениях. Этот тип связи образуется при взаимодействии атомов, электроотрицательности которых равны или отличаются незначительно. Такая связь возникает в результате обобществления валентных электронов, которые до образования связи принадлежали двум атомам. В результате образования молекулы оба электрона становятся общими для двух ядер. Так образуется единое электронное облако - молекулярнаяорбиталь.

КОВАЛЕНТНАЯ НЕПОЛЯРНАЯ СВЯЗЬ (КНС) - образуют атомы одного и того же химического элемента - неметалла (Например, H2, O2, О3).

КОВАЛЕНТНАЯ ПОЛЯРНАЯ СВЯЗЬ (КПС) - образуют атомы разных неметаллов, отличающихся по значениям электроотрицательности (Например, HCl, H2O).

Водородная связь. (H-связь) Ее образование обусловлено тем, что в результате сильного смещения электронной пары от электроотрицательного атома водорода, обладающей эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20-100 кДж моль-1.

Водородные связи могут быть внутри- и межмолекулярными. Внутримолекулярная водородная связь образуется, например, в ацетилацетоне и сопровождается замыканием цикла Исключительно важную роль водородная связь играет в биологических макромолекулах, таких неорганических соединениях как H2O, H2F2, NH3. За счет водородных связей вода характеризуется столь высокими по сравнению с H2Э (Э = S, Se, Te) температурами плавления и кипения. Если бы водородные связи отсутствовали, то вода плавилась бы при -100°С, а кипела при -80°С.

Металлическая связь— связь между положительными иона­ми в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. В соот­ветствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отры­ваться от них. В результате в кристаллической решетке металла появляются положительно заряженные ионы и свободные элек­троны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из «электронного газа». Как следствие, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве.

Металлическая связь отличается от ковалентной также и по прочности: ее энергия в 3-4 раза меньше энергии ковалентной связи.

Энергия связи — энергия, необходимая для разрыва хими­ческой связи во всех молекулах, составляющих один моль ве­щества. Энергии ковалентных и ионных связей обычно велики и составляют величины порядка 100-800 кДж/моль.МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ, взаимод. молекул между собой, не приводящее к разрыву или образованию новых хим. связей. Межмолекулярное взаимодействие определяет отличие реальных газов от идеальных, существование жидкостей и мол. кристаллов. От межмолекулярного взаимодействия зависят мн. структурные, спектральные, термодинамич., теплофиз. и др. св-ва в-в. Появление понятия межмолекулярного взаимодействия связано с именем Й. Д. Ван-дер-Ваальса, к-рый для объяснения св-в реальных газов и жидкостейпредложил в 1873 ур-ние состояния, учитывающее межмолекулярное взаимодействие (см. Ван-дер-Ваальса уравнение). Поэтому силы межмолекулярного взаимодействия часто называют ван-дер-ваальсовыми.

Виды межмолекулярного взаимодействия. Основу межмолекулярного взаимодействия составляют кулоновские силы взаимод. между электронами и ядрами одной молекулы и ядрами и электронами другой. В экспериментально определяемых св-вах в-ва проявляется усредненноевзаимод., к-рое зависит от расстояния R между молекулами, их взаимной ориентации, строения и физ. характеристик (ди-польного момента, поляризуемости и др.). При больших R, значительно превосходящих линейные размеры l самих молекул, вследствие чего электронные оболочки молекул не перекрываются, силы межмолекулярных взаимодействий можно достаточно обоснованно подразделить на три вида-электростатические, поляризационные (индукционные) и дисперсионные. Электростатич. силы иногда называют ориентационными, однако это неточно, поскольку взаимная ориентация молекул может обусловливаться также и поляризац. силами, если молекулы анизотропны

Кристаллические решетки. Атомные, молекулярные и ионные кристаллы. Зависимость физических свойств веществ от типов кристаллических решеток

В кристаллических веществах атомы, молекулы и ионы расположены упорядоченно, на определенных расстояниях. Такое закономерное расположение частиц в кристаллах называют кристаллической решеткой. Зависимости от того, какие частицы находятся в узлах этой решетки, различают ионные, атомные и молекулярные кристаллические решетки. Известны также и металлические кристаллические решетки.

Ионные кристаллические решетки характерны для соединений с ионным типом химической связи. В узлах таких решеток находятся противоположно заряженные ионы. Силы мижионнои взаимодействия являются весьма значительными, поэтому вещества с таким типом кристаллической решетки является нелетучими, твердыми, тугоплавкими, их растворы и расплавы проводят электрический ток. Типичными представителями таких соединений являются соли, например, натрия хлорид, калия нитрат и другие.

5.2При вза­и­мо­дей­ствии азота и лития об­ра­зу­ет­ся нит­рид лития (урав­не­ние 1), ко­то­рый легко раз­ла­га­ет­ся водой с вы­де­ле­ни­ем ам­ми­а­ка (урав­не­ние 2). Ам­ми­ак окис­ля­ет­ся кис­ло­ро­дом в при­сут­ствии пла­ти­но­во­го ка­та­ли­за­то­ра до ок­си­да азота (II), не име­ю­ще­го цвета (урав­не­ние 3). Об­ра­зо­ва­ние бу­ро­го газа NO2 из NO про­ис­хо­дит легко и са­мо­про­из­воль­но (урав­не­ние 4).

 

5.3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]