- •Периодический закон д.И. МЕнделеева и электронная структура атомов
- •Введение
- •1. Периодический закон и периодическая система химических элементов д.И. Менделеева
- •1.1. Историческая справка
- •1.1.1. Систематизация элементов. Периодический закон
- •1.1.2. Развитие периодического закона
- •1.2. Периодический закон в свете учения о строении атома
- •1.3. Структура периодической системы химических элементов.
- •1.4. Значение периодического закона
- •2. Периодичность изменения основных характеристик атомов элементов
- •2.1. Радиус атома
- •2.2. Энергия ионизации
- •2.3. Сродство к электрону
- •Электроотрицательность
- •Кислотно-оснóвные свойства химических соединений
- •2.6. Периодическая зависимость степеней окисления атомов элементов
- •Вопросы для самоконтроля
- •Дмитрий Иванович Менделеев
- •Литература
- •Оглавление
2.6. Периодическая зависимость степеней окисления атомов элементов
Атомам элементов присущи характерные для них степени окисления, которые связаны с положением элемента в периодической системе.
Высшая степень окисления атомов элементов главных подгрупп (А-групп) в каждом периоде обычно возрастают от +1 до +7.
Атомы элементов металлов I-III групп периодической системы образуют положительные ионы, заряд которых равен номеру их группы; таким образом, степень окисления атомов этих элементов непереходных металлов совпадает с номером их группы.
У атомов элементов неметаллов часто обнаруживаются по две характерные степени окисления. Их низшая степень окисления обычно равна: 8 минус номер группы элемента: таким образом, каждый атом может соединяться с (8 – номер группы) атомами водорода. Например, атом серы (VI группа) соединяется с двумя атомами водорода с образованием сероводорода H2S, и поэтому имеет степень окисления –2. Высшая степень окисления атомов неметаллов обычно равна номеру группы, особенно в соединениях с кислородом. Например, степень окисления атомов серы в оксиде SO3 и серной кислоте H2SO4 равна +6. Атомы большинства неметаллов, кроме этого, обладает и промежуточными степенями окисления. Например, атомы серы в различных соединениях имеют следующие степени окисления: 0 [самородная (молекулярная) сера S8], +4 (SO2, H2SO3).
У атомов переходных металлов (группы Б) степени окисления подчиняются определённым закономерностям. При окислении переходных металлов их атомы могут отдавать из валентной электронной оболочки не более двух s-электронов и все неспаренные d-электроны. Поэтому высшая степень окисления для атомов скандия Sc равна +3, и она увеличивается на единицу в каждой следующей группе, достигая максимального значения +7 у атомов марганца Mn. После этого степень окисления атомов вновь уменьшается на единицу у каждого следующего элемента металла (Fe, Co, Ni, Cu) достигая значения +2 у атома цинка. Единственное исключение из этой закономерности отсутствие степени окисления +5 у атомов Со.
Члены ряда d- переходных металлов проявляют высшие степени окисления атомов соответствующие в основном номерам групп элементов (например для элементов 4d-ряда: Ag+, Cd2+, Y3+, Zr4+, Nb+5, Mo+6, Tc+7, Ru+8).
У атомов d- переходных металлов проявляются, кроме высших, и другие степени окисления, среди которых чаще всего встречаются степени окисления +2 и +3.
Атомы металлов первого переходного d- ряда, от Sc до Zn, обнаруживают различные (от -2 до +7) степени окисления (рис. 14). Атомы металлов второго и особенно третьего переходных d- рядов, проявляют только высшие степени окисления.
Оксиды переходных элементов в своей низшей степени окисления проявляют выраженные основные свойства, а в высшей степени окисления проявляют - кислотные. Например, среди оксидов хрома: CrO – оснóвный, Cr2O3 – амфотерный, а CrO3 – кислотный.
Лантаниды и актиниды образуют ряды переходных металлов иного типа, в которых их соединения обладают сходными свойствами. Атомы лантанидов и актинидов обычно проявляют степень окисления +3. Другие степени окисления, характерны лишь для отдельных элементов (например, Eu2+, Ce4+ и U6+).
Рис. 14. Степени окисления, характерные для атомов 3d-элементов. (Наиболее часто встречающиеся степени окисления обозначены светлее)
Внутри групп Б, в противоположность группам А, возрастает стабильность соединений, в которых атомы находятся в высших степенях окисления. А это в свою очередь обусловливает то, что многие соединения элементов групп Б (V, Cr, Mn, Fe, Co, Ni, Cu) в водных растворах окрашены. Например: V2О5 – оранжевый, CrО3 – красный, Mn2О7 – зелёный, Fe2О3 – красно-коричневый, CoО – зеленовато-коричневый, NiО – тёмно-зелёный, Cu2О – красный).
Химические свойства элементов групп Б как внутри периода, так и внутри группы меняются в значительно меньшей степени, чем элементов групп А.
Периодичность изменения основных характеристик атомов и простых веществ* элементов главных подгрупп (групп А) представлена в табл. 8.
Таблица 8
Периодичность изменения химических и физических характеристик атомов и простых веществ элементов главных подгрупп
Характеристика |
Изменение |
|
в главных подгруппах |
в периодах |
|
Заряд ядра атомов |
Увеличивается ↓ |
Увеличивается → |
Восстановительные свойства атомов |
Увеличиваются ↓ |
Уменьшаются → |
Окислительные свойства атомов |
Уменьшаются ↓ |
Увеличиваются → |
Высшая валентность атомов по отношению к кислороду |
Постоянна |
Увеличивается I → VII |
Валентность атомов по отношению к водороду |
Постоянна |
Увеличивается I → IV← I |
Плотность простых веществ |
В основном увеличивается ↓ |
Увеличивается I ← IV → VII |
Температура плавления и кипения металлов |
В основном уменьшается ↓ |
|
Температура плавления и кипения неметаллов |
В основном увеличивается ↓ |
|
