- •7. В чем состоит идея метода наименьших квадратов?
- •8. В чем состоят основные достоинства и недостатки метода наименьших квадратов с точки зрения прикладной эконометрики?
- •19. Что такое коэффициент детерминации r2? Каков его смысл?
- •36. Как можно использовать полученные значимые оценки коэффициентов в эк. Анализе?
- •37. Как модель регрессии по времени может быть использована для предсказания
- •38. Каковы условия и ограничения для использования модели регрессии по времени для прогнозирования?
- •39. Как можно использовать модель регрессии по факторной независимой переменной для прогнозирования?
- •40. Какие проблемы и трудности возникают при использовании модели регрессии по
- •41. В чем состоят условия Гаусса-Маркова?
- •50. В каких случаях исключение константы из уравнения регрессии оправдано?
- •51. Что значит, что случайный член регрессии является аддитивным?
- •52. Зачем используется дополнительное условие нормальности распределения случайного члена?
- •53. Можно ли использовать уравнение регрессии, если условие нормальности распределения случайного члена не выполняется?
- •65. Каким образом выбирается уровень значимости для проверки гипотез о коэфф. Регрессии?
- •66. Что подразумевается под утверждением, что оценка коэффиц. Регрессии является значимой?
- •67. Какие способы существуют для определения значимости коэффициента регрессии?
- •68. Каковы практические следствия значимости коэффициентов регрессии для прикладного регрессионного анализа?
- •69. Каковы практические следствия незначимости коэффициентов регрессии для прикладного регрессионного анализа?
- •83. Что такое ошибки первого и второго рода в проверке гипотез о коэффициентах регрессии?
- •84. Какова связь ошибок первого и второго рода при проверке гипотез о коэф регрессии?
- •85. Что такое мощность критерия?
- •86. Как использовать метод доверит интервалов для установления значим коэффиц регрессии?
- •87. Как использовать метод доверительных интервалов для проверки гипотезы о
- •92. Каково соотношение между двусторонним и односторонним тестами? Пусть двусторонний тест позволил отвергнуть нулевую гипотезу. Что можно сказать об одностороннем тесте?
- •93. Каково соотношение между двусторонним и односторонним тестами? Пусть двусторонний тест не позволил отвергнуть нулевую гипотезу. Что можно сказать об одностороннем тесте?
- •94. Каково соотношение между двусторонним и односторонним тестами? Пусть односторонний тест позволил отвергнуть нулевую гипотезу. Что можно сказать о двустороннем тесте?
- •95. Каково соотношение между двусторонним и односторонним тестами? Пусть односторонний тест не позволил отвергнуть нулевую гипотезу. Что можно сказать об двустороннем тесте?
- •107. Как, исходя из коэфф. Детерм., проверить гипотезу о знач. Лин. Связи между переменными?
- •108. Для чего используется показатель стандартной ошибки уравнения регрессии?
- •109. В каких случаях можно использовать метод наименьших квадратов для оценивания нелинейных моделей?
- •110. Какие преобразования следует выполнить для оценивания нелинейных моделей
- •111. Какие конкретные типы нелин. Моделей пригодны для оценивания нелин. Моделей мнк?
- •112. В каких случаях при оценивании нелинейных моделей мнк оказывается неприменимым?
- •113. Что делать, если модель не приводится к виду, допускающую использование мнк?
- •114. Для чего нужны нелинейные эконометрические модели?
- •115. Исходя из каких соображений и в каком порядке следует выбирать форму зависимости для эконометрической модели?
- •116. Как интерпретируется коэффициент линейной формы регрессионной модели? Как можно обосновать справедливость предложенной интерпретации?
- •117. В каких случаях оправдано использование линейной регрессии?
- •118. Как вычислить эластичности в каждой точке в случае использования линейной регрессии, и для чего можно использовать этот показатель?
- •136. При сравнении каких моделей метод Зарембки применять не нужно?
- •137. Как формулируется нулевая гипотеза при проведении теста Бокса-Кока для
- •138. Как проводится тест Бокса-Кокса для сравнения качества двух моделей?
- •149. Можно ли сравнивать коэффициенты регрессии по их величине и использовать это сравнение для оценка значимости вклада каждой из переменной?
- •157. Каковы особенности анализа коэффициента детерминации в случае множественной регрессии?
- •158. Для чего используется скорректированный коэффициент детерминации?
- •159. Как рассчитывается скорректированный коэффициент детерминации и какие факторы определяют его значение?
- •160. На основании каких показателей можно судить о качестве регрессионной модели в целом?
- •161. Для чего используется f-критерий при оценке качества уравнения множественной регрессии?
- •162. Как рассчитать значение f-критерия для множественной регрессии, исходя из знания сумм квадратов остатков?
- •163. Как рассчитать значение f-критерия для множественной регрессии, исходя из знания коэффициента детерминации r2?
- •164. Какова особенность расчета числа степеней свободы для f-критерия в множественной регрессии?
- •165. Каков вид f-распределения? Почему обычно используются только односторонние f-критерии?
- •166. Каков содержательный смысл отношения Фишера в определении f-критерия?
- •167. Каковы общие принципы выбора уровня значимости при использовании f-критерия для оценки качества уравнения в целом?
- •168. Для чего используются t-тесты для коэффициентов регрессии и какова интерпретация их результатов?
- •169. Какова связь между f-критерием и t-критериями для коэффициентов регрессии? Есть ли связь между соответствующими критическими значениями?
- •170. Как проверить гипотезу о значимости коэффиц. Детерминации? в чем смысл такого теста?
- •177. Что такое мк в эконометрике?
- •183. Может ли проявиться мк при отсутствии явных парных корреляционных зависимостей между переменными?
- •184. Каковы основные проявления и последствия мк в регресс. Анализе?
- •185. Как влияет мк на значимость уравнения как целого?
- •186. Как влияет мк на значимость отдельных коэфф. Регрессии?
- •187. Могут ли коэфф. Множеств. Регрессии быть незначимыми, если уравнение в целом значимо?
- •188. Могут ли некоторые коэффициенты множественной регрессии быть значимыми, если уравнение в целом незначимо?
- •189. Почему мк часто вызывает появление «неправильного» знака коэффициента регрессии?
- •190. Как можно обнаружить наличие мультиколлинеарности?
- •191. Что следует предпринять в случае наличия мк?
- •192. Что включает в себя понятие «спецификация уравнения регрессии»?
- •193. Какой смысл вкладывается в понятие «существенной переменной»?
- •194. Что означает «правильно специфицированное уравнение регрессии»?
- •195. Каковы основные последствия невключения в уравнение регрессии существ. Переменной?
- •196. Каков механизм разрушения оценок коэффициентов при неправильной спецификации уравнения регрессии? Какое отношение имеет этот процесс к условиям Гаусса-Маркова?
- •197. Какова формула, определяющая величину смещения оценки коэффициента регрессии при невключении в него существенной переменной?
- •198. Какие основные факторы влияют на направление и величину смещения?
- •1 99. На основании чего можно оценить вклад факторов, влияющих на знак смещения?
- •200. Что вкладывается в термин «несущественная переменная»?
- •201. Каковы основанные последствия включения в уравнение регрессии несущ. Переменной?
- •202. Можно ли из незначимости переменной регрессии сделать вывод о том, что она является несущественной для уравнения?
- •203. Какими причинами может вызываться незначимость коэффициента при переменной в множественном уравнении регрессии?
- •204. Следует ли всегда исключать из уравнения незначимые переменные? Почему да, или почему нет?
- •205. Как можно оценить значимость вклада одной переменной, включаемой в регрессионную модель (необходимо знать два метода, основанных соответственно на использовании t-критерия и f-критерия)?
- •206. Как можно оценить значимость вклада одновременно нескольких переменных,
- •207. Каково соотношение между значимостью вклада группы включаемых переменных и вкладами отдельно каждой из включаемых переменных?
- •208. Каковы основные критерии для включения в модель регрессии новой переменной?
- •209. Каковы правила для исключения незначимой переменной из уравнения регрессии?
- •221. Каковы правила для выбора замещающей переменной?
- •222. Каково содержание эффекта замещения отсутствующей переменной в эконометрике?
- •233.В каких случаях и как использовать t-тест при проверке линейного ограничения?
- •240.Какие основные виды нелинейных зависимостей используются в эконометрических моделях?
- •241.В каких случаях используются полиномиальные формы регрессии? Какие экономические явления можно отобразить с помощью этих форм?
- •248.Каким образом можно учесть влияние технического прогресса в производств. Функции к-д?
36. Как можно использовать полученные значимые оценки коэффициентов в эк. Анализе?
Можно предположить, что данный коэффициент показывает предельное изменение зависимого параметра при изменении объясняющей переменной. Или для прогнозирования, для выявления знака зависимости одной переменной от другой, для расчета эластичности.
37. Как модель регрессии по времени может быть использована для предсказания
значений зависимой переменной?
В модель регрессии по времени включена переменная времени и подставив нужное значение (номер периода, для которого выполняется прогноз) мы получаем прогнозное значение зависимой переменной для данного периода.
38. Каковы условия и ограничения для использования модели регрессии по времени для прогнозирования?
Должны выполняться условия Гаусса-Маркова.
I. Регрессионная модель линейна по параметрам (коэффициентам), корректно специфицирована, и содержит аддитивный случайный член.
II. Случайный член имеет нулевое среднее.
III. Объясняющая переменная не коррелирована со случайным членом.
IV. Наблюдаемые значения случайного члена не коррелированы друг с другом.
V. Случайный член имеет постоянную дисперсию
VI. Случайный член распределен нормально (необязательное, но часто используемое условие).
Наблюдение должно включать Т+m наблюдений, из которых T – используется для построения регрессии (желательно высокое Т для точности), а последние m применяются для анализа точности предсказания. После проведения проверки можно построить прогноз на ближайшие несколько периодов, в среднем не далее 5% от длины промежутка выборки – чаще еще меньше.
39. Как можно использовать модель регрессии по факторной независимой переменной для прогнозирования?
С помощью регрессии по факторной независимой переменной можно прогнозировать поведение зависимой переменной в зависимости от изменения объясняющей переменной. Если в уравнение регрессии (с оцененными параметрами) подставить какое-то значение объясняющей переменной, то мы получим прогноз реакции зависимой переменной на изменение значения объясняющей переменной.
40. Какие проблемы и трудности возникают при использовании модели регрессии по
факторной независимой переменной для прогнозирования?
Эконометрические модели строятся из-за 2 причин. Во-первых, это прогнозирование; при высоком показателе R2 модель может дать очень хороший прогноз зависимой переменной на будущее. Во-вторых, для объяснения определенных зависимостей; в такой ситуации R2 может быть низким, но зато знак коэффициента при независимой переменной будет определен однозначно, что даст исследователю информацию о виде связи между показателями. Если модель строилась по первой причине и не имеет высокого R-квадрата, использовать ее для прогнозирования бесполезно, так как результат будет далеким от совершенства.
Предпосылки регрессионного анализа. Условия Гаусса-Маркова
41. В чем состоят условия Гаусса-Маркова?
Модель линейна по параметрам (коэффициентам), правильно специфицирована, содержит аддитивный случайный член.
Объясняющая переменная не коррелированна со случайным членом
Математическое ожидание случайного члена равно нулю (E(ui)=0 для всех i)
Случайный член гомоскедастичен (то есть его значение в каждом наблюдении получено из распределения с постоянной теоретической дисперсией: σ2ui =σ2u для всех i)
Значения случайного члена имеют взаимно независимые распределения (ui распределен независимо от uj для всех j≠i).
Случайный член имеет нормальное распределение (необязательное, но часто используемое условие).
42. Какой вывод относительно оцениваемого уравнения регрессии можно сделать из
выполнимости условий Гаусса-Маркова?
МНК-оценка в данном случае является лучшей оценкой в классе линейных.
43. Что произойдет, если по крайней мере одно из условий Гаусса-Маркова не выполняется?
Если не выполняется 1 и 4 условие, то появляется систематическое смещение; если не выполняется 2 и 3 – оценки становятся неэффективными. В обоих случаях модель некорректна.
44. Можно ли проверить выполнение условий Гаусса-Маркова? Если да, то каким образом?
Посмотреть на показатели качества коэффициентов регрессии, а также посмотреть на показатели качества уравнения в целом. Условия Гаусса-Маркова – условия на случайный член, который нам неизвестен. Но выполнение этих условий можно оценить по остаткам, полученным в модели, если она правильно специфицирована.
45. На основании чего можно судить о вероятном выполнении или невыполнении условий Г-М?
На основании диаграммы рассеяния, графика остатков. Важно, что случайный член (о котором теорема Гаусса-Маркова) и остатки различны, но их поведение похоже, однако случайный член не наблюдаем, зато остатки легко наблюдаемы. Поэтому мы используем остатки, чтобы судить о свойствах случайного члена.
46. Что означает, что модель линейна по параметрам?
Означает, что модель представляет собой взвешенную сумму параметров, а переменные выступают как веса, иными словами, параметры представлены непосредственно, а не как функции (например, log).
47. Можно ли оценивать методом наименьших квадратов уравнение регрессии без константы?
Нет. Уравнение регрессии без константы оценить возможно, но оценки коэффициентов регрессии будут смещенными.
48. В чем состоит роль константы уравнения регрессии?
Роль константы состоит в отражении любой систематической, но постоянной составляющей в зависимой переменной, которую не учитывают объясняющие переменные, включенные в уравнение регрессии, однако, которая оказывает влияние на исследуемую зависимую переменную. Константа интерпретируется в случае соответствия ее значения здравому смыслу или теоретическим предпосылкам.
49. К чему приводит исключение константы из линейного уравнения регрессии?
Исключение константы из уравнения регрессии приведет к тому, что систематическая постоянная составляющая Y, которую раньше учитывала константа, будет учитываться в факторных коэффициентах, что приведет к смещению их оценок. Исключение постоянного члена приводит к нарушению одного из условия Гаусса-Маркова (о равенстве нулю мат. ожидания случайного члена)
1. Оценки коэффициентов при переменных искажаются и смещаются
2. t-статистики становятся некорректными
Выводы:
1. За редкими и обоснованными исключениями не следует исключать постоянный член уравнения
2. Не следует полагаться на оценку самого свободного члена
