Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekonometrika_Otvety_1-4.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.47 Mб
Скачать

36. Как можно использовать полученные значимые оценки коэффициентов в эк. Анализе?

Можно предположить, что данный коэффициент показывает предельное изменение зависимого параметра при изменении объясняющей переменной. Или для прогнозирования, для выявления знака зависимости одной переменной от другой, для расчета эластичности.

37. Как модель регрессии по времени может быть использована для предсказания

значений зависимой переменной?

В модель регрессии по времени включена переменная времени и подставив нужное значение (номер периода, для которого выполняется прогноз) мы получаем прогнозное значение зависимой переменной для данного периода.

38. Каковы условия и ограничения для использования модели регрессии по времени для прогнозирования?

Должны выполняться условия Гаусса-Маркова.

I. Регрессионная модель линейна по параметрам (коэффициентам), корректно специфицирована, и содержит аддитивный случайный член.

II. Случайный член имеет нулевое среднее.

III. Объясняющая переменная не коррелирована со случайным членом.

IV. Наблюдаемые значения случайного члена не коррелированы друг с другом.

V. Случайный член имеет постоянную дисперсию

VI. Случайный член распределен нормально (необязательное, но часто используемое условие).

  • Наблюдение должно включать Т+m наблюдений, из которых T – используется для построения регрессии (желательно высокое Т для точности), а последние m применяются для анализа точности предсказания. После проведения проверки можно построить прогноз на ближайшие несколько периодов, в среднем не далее 5% от длины промежутка выборки – чаще еще меньше.

39. Как можно использовать модель регрессии по факторной независимой переменной для прогнозирования?

С помощью регрессии по факторной независимой переменной можно прогнозировать поведение зависимой переменной в зависимости от изменения объясняющей переменной. Если в уравнение регрессии (с оцененными параметрами) подставить какое-то значение объясняющей переменной, то мы получим прогноз реакции зависимой переменной на изменение значения объясняющей переменной.

40. Какие проблемы и трудности возникают при использовании модели регрессии по

факторной независимой переменной для прогнозирования?

Эконометрические модели строятся из-за 2 причин. Во-первых, это прогнозирование; при высоком показателе R2 модель может дать очень хороший прогноз зависимой переменной на будущее. Во-вторых, для объяснения определенных зависимостей; в такой ситуации R2 может быть низким, но зато знак коэффициента при независимой переменной будет определен однозначно, что даст исследователю информацию о виде связи между показателями. Если модель строилась по первой причине и не имеет высокого R-квадрата, использовать ее для прогнозирования бесполезно, так как результат будет далеким от совершенства.

Предпосылки регрессионного анализа. Условия Гаусса-Маркова

41. В чем состоят условия Гаусса-Маркова?

  1. Модель линейна по параметрам (коэффициентам), правильно специфицирована, содержит аддитивный случайный член.

  2. Объясняющая переменная не коррелированна со случайным членом

  3. Математическое ожидание случайного члена равно нулю (E(ui)=0 для всех i)

  4. Случайный член гомоскедастичен (то есть его значение в каждом наблюдении получено из распределения с постоянной теоретической дисперсией: σ2ui2u для всех i)

  5. Значения случайного члена имеют взаимно независимые распределения (ui распределен независимо от uj для всех j≠i).

  6. Случайный член имеет нормальное распределение (необязательное, но часто используемое условие).

42. Какой вывод относительно оцениваемого уравнения регрессии можно сделать из

выполнимости условий Гаусса-Маркова?

МНК-оценка в данном случае является лучшей оценкой в классе линейных.

43. Что произойдет, если по крайней мере одно из условий Гаусса-Маркова не выполняется?

Если не выполняется 1 и 4 условие, то появляется систематическое смещение; если не выполняется 2 и 3 – оценки становятся неэффективными. В обоих случаях модель некорректна.

44. Можно ли проверить выполнение условий Гаусса-Маркова? Если да, то каким образом?

Посмотреть на показатели качества коэффициентов регрессии, а также посмотреть на показатели качества уравнения в целом. Условия Гаусса-Маркова – условия на случайный член, который нам неизвестен. Но выполнение этих условий можно оценить по остаткам, полученным в модели, если она правильно специфицирована.

45. На основании чего можно судить о вероятном выполнении или невыполнении условий Г-М?

На основании диаграммы рассеяния, графика остатков. Важно, что случайный член (о котором теорема Гаусса-Маркова) и остатки различны, но их поведение похоже, однако случайный член не наблюдаем, зато остатки легко наблюдаемы. Поэтому мы используем остатки, чтобы судить о свойствах случайного члена.

46. Что означает, что модель линейна по параметрам?

Означает, что модель представляет собой взвешенную сумму параметров, а переменные выступают как веса, иными словами, параметры представлены непосредственно, а не как функции (например, log).

47. Можно ли оценивать методом наименьших квадратов уравнение регрессии без константы?

Нет. Уравнение регрессии без константы оценить возможно, но оценки коэффициентов регрессии будут смещенными.

48. В чем состоит роль константы уравнения регрессии?

Роль константы состоит в отражении любой систематической, но постоянной составляющей в зависимой переменной, которую не учитывают объясняющие переменные, включенные в уравнение регрессии, однако, которая оказывает влияние на исследуемую зависимую переменную. Константа интерпретируется в случае соответствия ее значения здравому смыслу или теоретическим предпосылкам.

49. К чему приводит исключение константы из линейного уравнения регрессии?

Исключение константы из уравнения регрессии приведет к тому, что систематическая постоянная составляющая Y, которую раньше учитывала константа, будет учитываться в факторных коэффициентах, что приведет к смещению их оценок. Исключение постоянного члена приводит к нарушению одного из условия Гаусса-Маркова (о равенстве нулю мат. ожидания случайного члена)

1. Оценки коэффициентов при переменных искажаются и смещаются

2. t-статистики становятся некорректными

Выводы:

1. За редкими и обоснованными исключениями не следует исключать постоянный член уравнения

2. Не следует полагаться на оценку самого свободного члена

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]