Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekonometrika_Otvety_1-4.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.47 Mб
Скачать

185. Как влияет мк на значимость уравнения как целого?

Наличие МК не говорит о неверной спецификации модели, коэффициенты остаются несмещенными, а стандартные ошибки рассчитываются корректно. Однако из-за увеличения стандартных ошибок возрастает риск того, что уравнение будет ошибочно признано незначимым.

186. Как влияет мк на значимость отдельных коэфф. Регрессии?

При наличии МК стандартные ошибки становятся больше, чем они были бы, если бы МК не было, что приводит к меньшей надежности полученных оценок.

МК приводит к увеличению дисперсий оценок коэффициентов, уменьшению значений t-stat. (что приводит к неверным выводам о значимости коэффициента), может выражаться в неверном с точки зрения теории или данных знаке коэффициента. Проявляется в неустойчивости коэффициента и его дисперсии в зависимости от спецификации регрессии, объема выборки. Наличие доминантной переменной (коррелированной с зависимой переменной) делает коэффициенты при остальных объясняющих переменных незначимыми.

187. Могут ли коэфф. Множеств. Регрессии быть незначимыми, если уравнение в целом значимо?

Таким образом, может проявляться МК в регрессии с данными объясняющими переменными, даже если модель правильно специфицирована, поскольку происходит занижение t-stat, в то время как общая значимость уравнения и значимость некоррелирующих переменных остаются незатронутыми.

188. Могут ли некоторые коэффициенты множественной регрессии быть значимыми, если уравнение в целом незначимо?

Да, могут. Например, при оценивании не имеющей смысла регрессии с 40 объясняющими переменными, каждая из которых не является действительным детерминантом зависимой переменной, F-статистика должна оказаться достаточно низкой, чтобы гипотеза H0 (модель не обладает никакой объясняющей способностью) не была отвергнута. Однако при выполнении t-теста для коэффициентов регрессии на 5%-ном уровне, существует 5%-ная вероятность допустить ошибку I рода (коэффициенты значимы - истинная гипотеза H0 (коэффициент при переменной равен 0) отвергается), поэтому в среднем можно ожидать, что 2 из 40 переменных будут иметь «значимые» коэффициенты.

189. Почему мк часто вызывает появление «неправильного» знака коэффициента регрессии?

При МК коэффициенты становятся неустойчивыми, поскольку становится сложно отделить влияние одной переменной от другой переменной. В результате оценки могут перейти через нуль и оказаться по другую сторону от нуля. Если это происходит, возникает неправильный знак коэффициента.

Из-за увеличения стандартных ошибок коэффициентов (дисперсии оценок коэффициентов) – оценка сильно отклоняется от теоретического значения. Такое явление часто возникает, когда коэффициенты при переменных положительны в теоретической модели, а корреляция между объясняющими переменными сильнее, чем каждой из объясняющих переменных с зависимой.

190. Как можно обнаружить наличие мультиколлинеарности?

Проблема МК может возникнуть, когда существует корреляция между объясняющими переменными.

Наиболее характерные признаки МК:

  • Небольшое изменение исходных данных (например, добавление новых наблюдений) приводит к существенному изменению коэффициентов модели.

  • Оценки имеют большие стандартные ошибки, малую значимость, в то время как модель в целом является значимой и обладает хорошей объясняющей способностью (хорошие значения F-статистики и R2).

  • Оценки коэффициентов имеют неправильные с точки зрения теории (и логики) знаки или неоправданно большие значения. Коэффициенты, которые по логике должны быть значимы, оказываются незначимыми.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]