- •7. В чем состоит идея метода наименьших квадратов?
- •8. В чем состоят основные достоинства и недостатки метода наименьших квадратов с точки зрения прикладной эконометрики?
- •19. Что такое коэффициент детерминации r2? Каков его смысл?
- •36. Как можно использовать полученные значимые оценки коэффициентов в эк. Анализе?
- •37. Как модель регрессии по времени может быть использована для предсказания
- •38. Каковы условия и ограничения для использования модели регрессии по времени для прогнозирования?
- •39. Как можно использовать модель регрессии по факторной независимой переменной для прогнозирования?
- •40. Какие проблемы и трудности возникают при использовании модели регрессии по
- •41. В чем состоят условия Гаусса-Маркова?
- •50. В каких случаях исключение константы из уравнения регрессии оправдано?
- •51. Что значит, что случайный член регрессии является аддитивным?
- •52. Зачем используется дополнительное условие нормальности распределения случайного члена?
- •53. Можно ли использовать уравнение регрессии, если условие нормальности распределения случайного члена не выполняется?
- •65. Каким образом выбирается уровень значимости для проверки гипотез о коэфф. Регрессии?
- •66. Что подразумевается под утверждением, что оценка коэффиц. Регрессии является значимой?
- •67. Какие способы существуют для определения значимости коэффициента регрессии?
- •68. Каковы практические следствия значимости коэффициентов регрессии для прикладного регрессионного анализа?
- •69. Каковы практические следствия незначимости коэффициентов регрессии для прикладного регрессионного анализа?
- •83. Что такое ошибки первого и второго рода в проверке гипотез о коэффициентах регрессии?
- •84. Какова связь ошибок первого и второго рода при проверке гипотез о коэф регрессии?
- •85. Что такое мощность критерия?
- •86. Как использовать метод доверит интервалов для установления значим коэффиц регрессии?
- •87. Как использовать метод доверительных интервалов для проверки гипотезы о
- •92. Каково соотношение между двусторонним и односторонним тестами? Пусть двусторонний тест позволил отвергнуть нулевую гипотезу. Что можно сказать об одностороннем тесте?
- •93. Каково соотношение между двусторонним и односторонним тестами? Пусть двусторонний тест не позволил отвергнуть нулевую гипотезу. Что можно сказать об одностороннем тесте?
- •94. Каково соотношение между двусторонним и односторонним тестами? Пусть односторонний тест позволил отвергнуть нулевую гипотезу. Что можно сказать о двустороннем тесте?
- •95. Каково соотношение между двусторонним и односторонним тестами? Пусть односторонний тест не позволил отвергнуть нулевую гипотезу. Что можно сказать об двустороннем тесте?
- •107. Как, исходя из коэфф. Детерм., проверить гипотезу о знач. Лин. Связи между переменными?
- •108. Для чего используется показатель стандартной ошибки уравнения регрессии?
- •109. В каких случаях можно использовать метод наименьших квадратов для оценивания нелинейных моделей?
- •110. Какие преобразования следует выполнить для оценивания нелинейных моделей
- •111. Какие конкретные типы нелин. Моделей пригодны для оценивания нелин. Моделей мнк?
- •112. В каких случаях при оценивании нелинейных моделей мнк оказывается неприменимым?
- •113. Что делать, если модель не приводится к виду, допускающую использование мнк?
- •114. Для чего нужны нелинейные эконометрические модели?
- •115. Исходя из каких соображений и в каком порядке следует выбирать форму зависимости для эконометрической модели?
- •116. Как интерпретируется коэффициент линейной формы регрессионной модели? Как можно обосновать справедливость предложенной интерпретации?
- •117. В каких случаях оправдано использование линейной регрессии?
- •118. Как вычислить эластичности в каждой точке в случае использования линейной регрессии, и для чего можно использовать этот показатель?
- •136. При сравнении каких моделей метод Зарембки применять не нужно?
- •137. Как формулируется нулевая гипотеза при проведении теста Бокса-Кока для
- •138. Как проводится тест Бокса-Кокса для сравнения качества двух моделей?
- •149. Можно ли сравнивать коэффициенты регрессии по их величине и использовать это сравнение для оценка значимости вклада каждой из переменной?
- •157. Каковы особенности анализа коэффициента детерминации в случае множественной регрессии?
- •158. Для чего используется скорректированный коэффициент детерминации?
- •159. Как рассчитывается скорректированный коэффициент детерминации и какие факторы определяют его значение?
- •160. На основании каких показателей можно судить о качестве регрессионной модели в целом?
- •161. Для чего используется f-критерий при оценке качества уравнения множественной регрессии?
- •162. Как рассчитать значение f-критерия для множественной регрессии, исходя из знания сумм квадратов остатков?
- •163. Как рассчитать значение f-критерия для множественной регрессии, исходя из знания коэффициента детерминации r2?
- •164. Какова особенность расчета числа степеней свободы для f-критерия в множественной регрессии?
- •165. Каков вид f-распределения? Почему обычно используются только односторонние f-критерии?
- •166. Каков содержательный смысл отношения Фишера в определении f-критерия?
- •167. Каковы общие принципы выбора уровня значимости при использовании f-критерия для оценки качества уравнения в целом?
- •168. Для чего используются t-тесты для коэффициентов регрессии и какова интерпретация их результатов?
- •169. Какова связь между f-критерием и t-критериями для коэффициентов регрессии? Есть ли связь между соответствующими критическими значениями?
- •170. Как проверить гипотезу о значимости коэффиц. Детерминации? в чем смысл такого теста?
- •177. Что такое мк в эконометрике?
- •183. Может ли проявиться мк при отсутствии явных парных корреляционных зависимостей между переменными?
- •184. Каковы основные проявления и последствия мк в регресс. Анализе?
- •185. Как влияет мк на значимость уравнения как целого?
- •186. Как влияет мк на значимость отдельных коэфф. Регрессии?
- •187. Могут ли коэфф. Множеств. Регрессии быть незначимыми, если уравнение в целом значимо?
- •188. Могут ли некоторые коэффициенты множественной регрессии быть значимыми, если уравнение в целом незначимо?
- •189. Почему мк часто вызывает появление «неправильного» знака коэффициента регрессии?
- •190. Как можно обнаружить наличие мультиколлинеарности?
- •191. Что следует предпринять в случае наличия мк?
- •192. Что включает в себя понятие «спецификация уравнения регрессии»?
- •193. Какой смысл вкладывается в понятие «существенной переменной»?
- •194. Что означает «правильно специфицированное уравнение регрессии»?
- •195. Каковы основные последствия невключения в уравнение регрессии существ. Переменной?
- •196. Каков механизм разрушения оценок коэффициентов при неправильной спецификации уравнения регрессии? Какое отношение имеет этот процесс к условиям Гаусса-Маркова?
- •197. Какова формула, определяющая величину смещения оценки коэффициента регрессии при невключении в него существенной переменной?
- •198. Какие основные факторы влияют на направление и величину смещения?
- •1 99. На основании чего можно оценить вклад факторов, влияющих на знак смещения?
- •200. Что вкладывается в термин «несущественная переменная»?
- •201. Каковы основанные последствия включения в уравнение регрессии несущ. Переменной?
- •202. Можно ли из незначимости переменной регрессии сделать вывод о том, что она является несущественной для уравнения?
- •203. Какими причинами может вызываться незначимость коэффициента при переменной в множественном уравнении регрессии?
- •204. Следует ли всегда исключать из уравнения незначимые переменные? Почему да, или почему нет?
- •205. Как можно оценить значимость вклада одной переменной, включаемой в регрессионную модель (необходимо знать два метода, основанных соответственно на использовании t-критерия и f-критерия)?
- •206. Как можно оценить значимость вклада одновременно нескольких переменных,
- •207. Каково соотношение между значимостью вклада группы включаемых переменных и вкладами отдельно каждой из включаемых переменных?
- •208. Каковы основные критерии для включения в модель регрессии новой переменной?
- •209. Каковы правила для исключения незначимой переменной из уравнения регрессии?
- •221. Каковы правила для выбора замещающей переменной?
- •222. Каково содержание эффекта замещения отсутствующей переменной в эконометрике?
- •233.В каких случаях и как использовать t-тест при проверке линейного ограничения?
- •240.Какие основные виды нелинейных зависимостей используются в эконометрических моделях?
- •241.В каких случаях используются полиномиальные формы регрессии? Какие экономические явления можно отобразить с помощью этих форм?
- •248.Каким образом можно учесть влияние технического прогресса в производств. Функции к-д?
177. Что такое мк в эконометрике?
Слово «коллинеарность» описывает линейную связь между двумя независимыми переменными, тогда как «МК» – между более чем двумя переменными. На практике всегда используется один термин.
Виды
1. Строгая (perfect) МК – наличие линейной функциональной связи между независимыми переменными (иногда также и зависимой).
2. Нестрогая (imperfect) МК – наличие сильной линейной корреляционной связи между независимыми переменными (иногда также и зависимой).
178. В чем сущность проблемы МК?
Корреляционные связи есть всегда. Проблема МК – проблема силы проявления корреляционных связей. Однозначных критериев МК не существует. Строгая МК нарушает одно из основных правил Гаусса-Маркова и делает построение регрессии полностью невозможным. Нестрогая МК затрудняет работу, но не препятствует получению правильных выводов.
179. Каковы основные причины возникновения МК?
1. ошибочное включение в уравнение 2х или более линейно зависимых переменных
2. две или более объясняющие переменные, в нормальной ситуации слабо коррелированные, становятся в конкретных условиях выборки сильно коррелированными.
3. в модель включается переменная, сильно коррелирующая с зависимой переменной.
180. Что такое доминантная переменная?
Это такая независимая переменная, включаемая в модель, которая сильно коррелирует с зависимой переменной. Такая переменная «забивает» влияние всех остальных переменных и их влияние становится незначимым.
181. В чем состоит интерпретация метода наименьших квадратов как метода определения вклада факторов?
МНК позволяют оценить вклад каждого фактора по отдельности даже в случае, когда переменные сильно коррелированны. (сильная МК)
182. Почему МК может быть охарактеризована в большей степени как проблема выборки, а не генеральной совокупности?
Потому что МК в большей степени зависит от свойств самой выборки, например, количества наблюдений и величины ошибок при измерении переменных.
МК - явление, проявляющееся на уровне выборки:
1. В одной выборке МК может быть сильной, в другой - слабой
2. Выборочные данные следует всесторонне предварительно исследовать.
3. Полезен расчет выборочных коэффициентов корреляции, ковариационной матрицы и ее определителя.
183. Может ли проявиться мк при отсутствии явных парных корреляционных зависимостей между переменными?
Может. Так как МК – ситуация линейной зависимости между объясняющими переменными. Однако вовсе необязательно это зависимость должна быть парной.
184. Каковы основные проявления и последствия мк в регресс. Анализе?
вида МК:
1)Строгая МК – наличие линейной функциональной связи между независимыми переменными (иногда также и зависимой) Х1=а0+а2Х2
2) Нестрогая МК – наличие сильной линейной корреляционой связи между независимыми переменными (иногда также и зависимой) Х1=а0+а2Х2+и
Когда возникает МК:
1. Ошибочное включение в уравнение двух или более линейно зависимых переменных
2. Две или более объясняющие переменные, в нормальной ситуации слабо коррелированные, становятся в конкретных условиях выборки сильно коррелированными.
3. В модель включается переменная, сильно коррелирующая с зависимой переменной (такая независимая переменная называется доминантной)
Последствия МК
1. Оценки коэффициентов остаются несмещенными Стандартные ошибки коэффициентов увеличиваются
3. Вычисленные t-статистики занижены.
4. Оценки становится очень чувствительными к изменению спецификации и изменению отдельных наблюдений.
5. Общее качество уравнения, а также оценки переменных, не связанных МК, остаются незатронутыми.
6. Чем ближе МК к совершенной (строгой), тем серьезнее ее последствия.
